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Abstract—Automated program repair (APR) has been gaining ground recently. However, a significant challenge that still remains is

patch overfitting, in which APR-generated patches plausibly pass the validation test suite but fail to generalize. A common practice to

assess the correctness of APR-generated patches is to judge whether they are equivalent to ground-truth, i.e., developer-written

patches, by either generating additional test cases or employing human manual inspections. The former often requires the generation

of at least one test witnessing the behavioral differences between the APR-patched and developer-patched programs. Searching for

the witnessing test, however, can be difficult as the search space can be enormous. Meanwhile, the latter is prone to human biases

and requires repetitive and expensive manual effort.

In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches

via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures

program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program

and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a

APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In

case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled

patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to

leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test

cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a

program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on

real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting

for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines

by 14% and 19% in terms of Accuracy and F-Measure, respectively.

Index Terms—Automated Patch Correctness Assessment, Overfitting problem, Automated Program Repair, Program Invariants, Code

Representations

✦

1 INTRODUCTION

Automated program repair (APR) is a promising approach
to alleviate the onerous burden on developers to manually
fix bugs. A substantial number of APR techniques have been
proposed over the years [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], with several breakthroughs that inspired potential
practical adoption of APR. Notably, Facebook has recently
deployed SapFix [11], the first-ever industrial-scale auto-
matic bug fixing system, for suggesting fixes to developers
in real-world products. Despite the recent success, APR still
suffers from a major challenge, namely patch overfitting [12],
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[13], in which a generated patch may pass all test cases
but still fails to generalize to the intended behaviors of the
program. Qi et al. [2] reported that 98% of the plausible
patches generated by GenProg [14] are overfitting.

Detecting overfitting patches is one key challenge that
needs to be addressed to not only allow for fair compar-
isons between APR techniques but also enable a practi-
cal adoption of APR by developers. So often, one APR
technique claims to be better than others only in terms of
the number of bugs that it can generate “correct” patches
for. Furthermore, recent work suggested that low-quality
patches may adversely affect developers’ performance [15].
A fundamental question is then,

”How do we determine whether a patch is correct?”

Unfortunately, even with the presence of the ground truth
(developer-patched) program, it is difficult to tell if a APR-
patched program is correct. That is unless the APR-patched
program and the ground truth program are exactly syn-
tactically the same, determining whether two programs
are semantically equivalent is indeed an undecidable prob-
lem [16].

Recent approaches in APR explored different ways to
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assess the correctness of APR-generated patches concerning
available developer-written patches as ground truth. These
approaches either use test-suite augmentation or human
manual inspections. While being effective [17], the human
manual inspections are prone to human biases, are expen-
sive, and require manual, repetitive tasks. The test-suite
augmentation approaches, e.g., [18], [7] are fully automated
but require generating at least one test case to witness be-
havioral differences between the APR-patched and ground
truth programs. A recent study [17] showed that the test-
suite augmentation approaches are indeed ineffective as the
search space for bug-witnessing test cases can be large. Even
the state-of-the-art test case generation techniques such as
Randoop [19] and DIFFTGEN [18] can only identify 22%
of the overfitting patches generated by APR tools [17]. Xin
et al. [18] also reported that state-of-the-art test generator
EVOSUITE [20], in many cases, failed to generate any test
methods that exercise code changes introduced in generated
patches and thus failed to identify behavioral differences
between the patches and the ground truth.

In this paper, we introduce a novel technique, named IN-
VALIDATOR, that incorporates both semantic and syntactic
reasoning to automatically assess the correctness of gener-
ated patches from APR techniques. INVALIDATOR reasons
about program semantic via program invariants. Simultane-
ously, it reasons about program syntax via language semantic
learned from large code corpus using pretrained language
models. Similar to existing automated patch correctness
assessment techniques, INVALIDATOR relies on behavioral
differences between the APR-patched and ground truth
programs to judge patch correctness. However, conceptu-
ally, Invalidator is different from the strategy employed
by existing APAC techniques (e.g. DIFFTGEN [18], PATCH-
SIM [21], or RANDOOP [19], [17]). These techniques generate
new tests to augment the current test suite, in which each
test generates one execution. Thus, the chance to hit an
execution that reveals a behavioral difference between the
APR-patched and ground truth programs is approximately
linearly proportional to the number of tests generated. In
contrast, Invalidator only uses the current test suite and
infers program invariants that naturally generalize beyond
the test suite. The generalization of program invariants
allows Invalidator to effectively and semantically reason
about program correctness. Additionally, Invalidator further
augments program semantic reasoning by syntactic reason-
ing to enhance its effectiveness. We describe the details of
semantic and syntactic reasonings in Invalidator below.

Given a APR-generated patch, the original buggy pro-
gram and its correct (ground-truth) version, INVALIDATOR

works in two main phases.
1© Semantic-based Classifier. The semantic-based classifier

is built based on two high-level intuitions. First, program
invariants that are maintained in both the buggy and correct
(ground truth) versions of a program can serve as correct
specifications of the program. Second, program invariants
that only exist in the buggy program but do not exist in the
correct version may represent error specifications of the pro-
gram. INVALIDATOR determines that a machine-generated
patch overfits if the machine-patched program: (1) violates
correct specifications or (2) maintains error specifications.
Particularly, INVALIDATOR first automatically infers likely

invariants of each program based on its original test suite
by using DAIKON [22], a well-known invariant inference
tool. INVALIDATOR then constructs the set of correct and error
specifications, which serve as approximate specifications for
the program under test. Based on the inferred specifica-
tions, INVALIDATOR determines that a patch is overfitting
if invariants inferred from the machine-patched program
either violate the correct specifications or maintain error
specifications.

2© Syntactic-based Classifier. In case the invariant-based
specification inference fails to determine an overfitting
patch, INVALIDATOR further detects overfitting patches
via language semantic differences between the machine-
generated patch and its buggy and correct version. Specifi-
cally, INVALIDATOR employs a pre-trained language model,
i.e. CODEBERT to extract source syntactic features from
source code of each program. INVALIDATOR then measures
the differences by a set of comparison functions, e.g., sub-
traction or similarity. Finally, INVALIDATOR uses a trained
model from labeled data to estimate the likelihood of the
machine-generated patch being overfitting based on the
syntactic proximity.

We have conducted our experiments on a dataset of
885 patches which include 508 overfitting patches and 377
correct ones generated for large real-world programs in the
Defects4J dataset. To investigate the effectiveness of our
approach, we compared INVALIDATOR against the state-of-
the-art APAC techniques, consisting of RGT [43], ODS [23],
BERT+LR [24], PATCHSIM [21], DIFFTGEN [18], ANTI-
PATTERNS [25], DAIKON [26]. Experiment results showed
that INVALIDATOR correctly classified 79% overfitting
patches, accounting for 23% more overfitting patches being
detected as compared to the best baseline. Invalidator also
remarkably outperforms the best baselines by 14% (0.81 vs.
0.68) and 19% (0.87 vs. 0.76) in terms of Accuracy and F-
Measure, respectively.

In summary, we made the following contributions:

• We introduced INVALIDATOR, a novel technique
that uses both semantic reasoning (via program in-
variants) and syntactic reasoning (via source code
features) to automatically validate APR-generated
patches. Our empirical evaluation demonstrated that
our approach effectively detects 79% overfitting
patches with a precision of 97%.

• We introduced two overfitting rules based on
program invariants to validate machine-generated
patches. Our empirical evaluation shows that these
overfitting rules can detect 51 % overfitting patches
with a precision of 97%.

• We proposed to use syntactic reasoning from pro-
gram source code to augment semantic reasoning
from two aforementioned overfitting rules. Our em-
pirical evaluation shows that syntactic reasoning can
boost the performance of our approach by 35% and
30% in terms of Accuracy and F-Measure, respec-
tively.

• We conducted experiments on 885 machine-
generated patches for the Defects4J benchmark. Ex-
periment results show that the unique combina-
tion of syntactic and semantic reasoning empowers
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INVALIDATOR to achieve substantial improvements
(i.e., 19% and 14% for Accuracy and F-Measure,
respectively) over state-of-the-art baselines.

The remainder of this paper is structured as follows.
Section 2 introduces background on the overfitting problem,
APAC, and likely invariants. Section 3 describes a moti-
vating example for our approach, followed by Section 4
that presents our approach in detail. Section 5 describes
our experimental setup and results. Section 6 and Section
7 discuss threats to validity and related work, respectively.
Finally, Section 8 concludes and presents future work.

2 BACKGROUND

This section presents an outline of recent automated pro-
gram repair (APR) techniques, the overfitting problem in
APR, and techniques for assessing the correctness of APR-
generated patches. We subsequently explain program in-
variants and dynamic invariant detection.

2.1 Automated Program Repair

Program Repair. Given a buggy program and a set of test
cases in which there exist at least one failing test, the overall
goal of automated program repair (APR) techniques is to
generate a patch that passes all the test cases while not
introducing new bugs. Generally, APR techniques can be
categorized into two main families, including search-based
repair and semantic-based repair. Search-based techniques
often use meta-heuristic algorithms, e.g. genetic program-
ming [14], random search [27], or learning algorithms such
as data mining and machine learning, e.g., [3], [28], [29],
and [7], to apply mutations and evolve the buggy program
until they find a patch passing the test suite. Semantics-
based repair techniques, e.g. ANGELIX [6], S3 [8], JFIX [30],
use semantic analysis, e.g. symbolic execution, and program
synthesis to construct patches that satisfy certain semantic
constraints. We will elaborate in detail on these techniques
in the related work section (Section 7).

Overfitting. One key challenge in APR is that APR can gen-
erate tests-adequate patches that may not generalize. This is
known as the patch overfitting problem, in which the gener-
ated patches may pass all tests but still are incorrect [2], [12].
Early APR techniques use an existing test suite as an oracle
to validate generated patches [31], [14]. Specifically, a patch
is considered as correct if it passes all test cases and incorrect
otherwise [31], [14]. Recent studies [2], [12] showed that this
assessment method is ineffective due to the incompleteness
of the test suite used for assessment. By manual analyses, Qi
et. al. [2] have shown that the majority of patches generated
by search-based APR techniques such as GENPROG [14],
AE [32], and RSREPAIR [27] are overfitting. By automated
assessment, in which a new independent test suite is gener-
ated to cross-validate APR-generated patches, Le et al. [13]
also have reported that semantics-based repair techniques,
such as ANGELIX [6] and the likes, are no exception to the
overfitting issue.

Automated Patch Correctness Assessment. Recently, re-
searchers often adopt either: (1) manual annotation, i.e.,
authors of repair techniques manually judge the correctness

of patches generated by their and competing tools, or (2) au-
tomated assessment, i.e., an independent test suite is used to
automatically assess patch correctness. Le et al. [17] showed
that manual annotation is more effective but is expensive.
Automated assessment, on the other hand, does not require
a manual effort but is less effective [17]. Recent research
effort has been devoted to automated patch correctness
assessment [18], [21], [17]. Existing automated patch cor-
rectness assessment techniques assume the oracle (ground
truth) patches are available [18], [17], [33]. For example,
Xin et al. [18], and Le et al. [17] generate new test cases
based on the correct (ground truth) program to identify
overfitting patches. Our proposed technique falls into this
category wherein we also assume the ground truth patches
are available. Different from existing test-based approaches,
our technique relies on program invariants to judge patch
correctness.

2.2 Program invariants

Program invariants (invariants for short) is a term referring
to properties that hold at a certain program point or points,
which might be found in an assert statement, or a formal
specification [22]. For example, a program invariant can be
x >= abs (y) or size (A) == size (B). Among several of
their usages, program invariants can be used to detect mod-
ifications that violate the original properties of a program.

True invariants, however, are usually difficult to obtain
in real-world projects, and thus researchers often resort to
properties known as likely invariants, which holds for some
executions, but perhaps not all [34], [35]. Likely invariants can
be automatically inferred from execution traces by dynamic
invariant detection techniques which generalizes from ex-
ecution traces using invariant templates. Previous studies
have demonstrated the effectiveness of likely invariants
in various tasks including complexity analysis [36], [37],
termination analysis [38], bug localization [39] or neural
network analysis [40], [41].

In this paper, we use Daikon [22] - a popular tool for
mining likely invariants, as our dynamic invariant detection
technique. Daikon observes the execution traces of pro-
grams and matches them against a set of templates to infer
likely invariants that hold on all or most of the executions.
From a large set of 311 templates (c.f. Details in Daikon
Manual Documentation 1), Daikon can detect a wide variety
of invariants that generalize well beyond the test suite used
to produce the execution traces [42].

3 MOTIVATION

Let us now use an example to motivate our approach of
using program invariants to determine patch correctness.
The bug example in Figure 1 shows a APR-generated patch
(Figure 1a) and the ground truth developer-written patch
(Figure 1b).

In this example, the buggy method is
iterateSimplex() which computes the next simplex
of the multi-directional optimizer. The root cause of the
bug is the endless loop while(true) (line 6 in Figure

1. http://plse.cs.washington.edu/daikon/download/doc/daikon/
Daikon-output.html#Invariant-list
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(a) An overfitting patch generated by Kali [27]

(b) The correct patch written by human developers

Fig. 1: An overfitting patch generated by Kali and the
ground-truth human-written patch for Math-84

1b). The developer-written patch as shown in Figure 1b,
correctly inserts a code snippet (line 5, lines 19-26 in Figure
1b) to correctly stop the loop once the algorithm converges.
Meanwhile, the plausible patch generated by Kali [27] in
Figure 1a inserts an early return at lines 14-15, rendering
the failing test case to plausibly pass. The APR-patched
program avoids the endless loop, but on the other hand, it
ignores the main algorithm, which requires many iterations
to converge. Unfortunately, state-of-the-art test-based
APAC techniques such as RGT [43], DiffTGen [18] and
Randoop [19] failed to identify behavioral differences
between the APR-patched program and the ground
truth [13] due to the large search space of bug-witnessing
test cases.

Invariants come into play. Let us now look at how program
invariants can show that the APR-patched program is over-
fitting. The intended behavior of the program is that under
different inputs, the algorithm will terminate accordingly
after several iterations once the algorithm converges. For
the method iterateSimplex, an invariant iterations
> orig(iterations) is inferred from both the buggy
version under repair and the correct version of the pro-
gram. This invariant means that the value for the vari-
able iterations before the method iterateSimplex is
called, denoted as orig(...), is smaller than that of after
the method is executed. The variable iterations mea-
sures the number of iterations executed by the algorithm.

This invariant reflects the fact that the while loop (Line 4
in Figure 1b) should be executed until the multi-directional
optimizer converges, which may require many iterations
to complete. Meanwhile, in the APR-patched program, the
while-loop always terminates after the first iteration due
to code snippet if (true) { return ;} (line 14-15 in
Figure 1a). Indeed, we obtained an invariant iterations
- orig(iterations) - 1 == 0 for the APR-patched
program. This invariant means that the value for the vari-
able of iterations is always incremented by 1 after
the method iterateSimplex is executed. This invariant
shows an overfitting behavior of the APR-patched program,
which violates the intended behaviors of the program, i.e.,
under varying inputs, the algorithms need varying numbers
of iterations to converge. Our technique, INVALIDATOR,
detects this overfitting behavior of the APR-patched pro-
gram by comparing the invariant generated from the APR-
patched program versus that of the buggy and ground truth
programs. Specifically, INVALIDATOR realizes that the APR-
patched program maintains an invariant that never holds
in the buggy and ground truth programs, witnessing a
behavioral divergence that accounts for a possible error.

4 METHODOLOGY

Figure 2 illustrates the workflow of INVALIDATOR. A APR-
patched program is first validated based on a semantic-
based classifier. In this phase, INVALIDATOR reason about
patch correctness based on specifications, i.e., correct and
error specifications, inferred via analyzing the behaviors dif-
ferences of buggy program and its correct version, captured
using automatically-inferred program invariants. A APR-
patched program is considered overfitting if invariants in-
ferred from the APR-patched program either violate the cor-
rect specification or maintain error specification. In case the
inferred specifications fail to determine an overfitting patch,
INVALIDATOR further uses a learning-based model, which
leverages syntactic reasoning to estimate the probability that
the APR-patched program is overfitting. We explain more
details of INVALIDATOR below.

4.1 Semantic-based Patch Classifier

Figure 3 describes how INVALIDATOR identifies overfitting
patches via semantic-based patch classifier. INVALIDATOR

first constructs approximate specifications of the program
under test via program invariants inferred by a dynamic
invariant inference tool, namely DAIKON [22] (Section 4.1.1).
Then, based on the inferred specifications, INVALIDATOR

automatically classifies whether a APR-patched program is
overfitting (Section 4.1.2). Below, we explain each phase of
INVALIDATOR in detail.

4.1.1 Invariant-based Specification Inference

The purpose of invariant inference is to ultimately derive
specifications that determine the correct and error behaviors
of a program. INVALIDATOR uses invariants to approximate
the specifications based on two key observations that allow
detecting behavioral differences, as follows:

Observation 1. Program invariants that are maintained in both
the buggy and correct (ground truth) versions of a program can
serve as correct specification of the original program
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Fig. 2: The workflow of Invalidator

Observation 2. Program invariants that only exist in the buggy
program but do not maintain in the correct version may represent
error specification of the buggy program.

Based on the correct and error specification, INVALIDA-
TOR can heuristically assess the patch correctness. Below, we
formally define the correct and error behaviors, explain how
we build them via invariant inference, and how they can be
used to determine overfitting patches effectively.

We formally describe the correct specifications of a pro-
gram based on invariants in Definition 1. Correct specifica-
tions reflect common behaviors in both the original buggy
program and the correct (ground truth) program in which
the bug is fixed by developers. We use a set of invariants,
denoted as C, which commonly appear in both the buggy
version and the correct version of a program, to approximate
the correct behaviors of the program. The use of C reduces
the false positive rate (as we shall see in Section 5). Error
behaviors as formally defined in Definition 2, on the other
hand, capture the behavioral divergence of the buggy pro-
gram from the correct program. The behavioral difference is
reflected by a set of program invariants E that hold in the
buggy program but do not hold in the correct version of the
program.

Definition 1. (Correct specification) Consider a buggy program
B and its correct/ground truth version G. The correct specification
of G is approximated by a set of invariants C such that B |= C
and G |= C.

Definition 2. (Error specification) Consider a buggy program B

and its correct/ground truth version G. The error specification of
B is approximated by a set of invariants E such that B |= E and
G 6|= E .

Let us now explain how we build the specifications that
approximate the correct and error behaviors of a program
as depicted in Figure 3. Note that we use both the buggy
and correct programs to infer the specifications. For each
program, denoted as prog, INVALIDATOR records execu-
tions across both sets of failing test cases F and set of
related passing test cases P. Typically, passing test cases
P reflect correct specification of a program, while failing

Fig. 3: APAC via invariant-based specification inference.
IC, IB and IP are sets of invariants inferred from correct
program, buggy program and APR-patched program, re-
spectively.

test cases F reflect error specification of the program. Thus,
INVALIDATOR maintains the execution traces of the two
test sets F and P separately to construct specifications for
correct and error specification later on. INVALIDATOR then
leverages DAIKON [22] to infer likely invariants based on the
execution traces. DAIKON first captures runtime values of
variables at specific points of a program, such as the points
at which a method is entered or exited, and then it uses a
set of templates satisfying the runtime values to infer likely
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invariants, which are properties that hold over all of the
executions. We refer to invariants inferred from passing test
cases and failing test cases of a program prog as IFprog and

IPprog, respectively.
Let us use B and G to denote the original buggy and

correct (ground truth) versions of a program. INVALIDATOR

then infers invariants from the passing test cases on B

and G, denoted as IP
B

and IP
G

respectively. INVALIDATOR

constructs the correct specification C of G by intersecting
the two sets of invariants IP

B
and IP

G
, taking the resulting

invariants as an approximation for correct specification of
G. To construct the specifications E for error specification in
B, INVALIDATOR first infers invariants from the failing test
cases on B and G, denoted as IF

B
and IF

G
respectively. The

specification E is then approximated by the invariants that
are in IF

B
but are not in IF

G
. In summary, C represents the

expected specification in B and G, while E represents the
behavioural difference of B compared to G.

INVALIDATOR uses the constructed specifications C and
E as input to its patch classifier that we describe in Sec-
tion 4.1.2 to identify overfitting patches. Note that, INVAL-
IDATOR classifier considers invariants at inferred from all
methods executed by a given test suite instead of invariants
inferred from buggy methods only (i.e., methods modified
by human developers in the correct program) as prior
works [44], [26]. We discuss the effectiveness of the classifier
with these two granularities in detail in Section 5.

4.1.2 Patch Classifier

The patch classifier takes as input a APR-generated patch,
the constructed specifications including correct specification
C and error specification E to determine whether the patch
is overfitting.

Our approach to identifying patch correctness hinges on
the following two key observations:

Observation 3. A patch should be considered overfitting if it
violates any of the correct specification described in C.

Observation 4. A patch should be considered overfitting if it
maintains any of the error specification described in E .

The above observations translate to the following two
rules that allow INVALIDATOR to determine whether a APR-
patched program is overfitting. Let B be a buggy program,
G be the human-written correct version of the program,
P be a APR-patched program to be assessed whether it is
overfitting, and IP be the set of invariants inferred from P.
Then, a patch is considered as overfitting if it satisfies either
of the following:

• Overfitting-1: The patch violates the specifications
representing correct specification C for B and G.
More formally, ∃inv ∈ C : inv /∈ IP

• Overfitting-2: The patch maintains any error behav-
iors described in E for B. More formally, ∃inv ∈ E :
inv ∈ IP

In the Overfitting-1 rule, we consider any APR-patched
program P to violate the correct specification if the set
of invariants inferred from P, denoted as IM , excludes
any invariants that are in the correct specifications C. This
helps guard against cases where the patch deletes some

Algorithm 1: Invariant-based Specification Infer-
ence. B is the original buggy program, P is a APR-
patched program, and G is the correct/ground
truth program by developers

Input:
• IP

P
: invariant inferred from passing tests on P

• IF
P

: invariant inferred from failing tests on P

• IPB : invariant inferred from passing tests on B

• IFB : invariant inferred from failing tests on B

• IP
G

: invariant inferred from passing tests on G

• IF
G

: invariant inferred from failing tests on G

Output: True: P is overfitting, False: Otherwise

1 C ← IP
G
∩ IP

B
⊲ Correct specification

2 E ← IF
B
\IF

G
⊲ Error specification

3 foreach inv in C do

4 if inv /∈ IP
P

then
5 return True
6 end
7 end
8 foreach inv in E do

9 if inv ∈ IFP then
10 return True
11 end
12 end
13 return False

functionalities of the original program and thus excludes
the specifications corresponding to the functionalities. In the
Overfitting-2 rule, any patch that still maintains an invariant
representing error specification in the original buggy pro-
gram B is considered overfitting.

Note that, INVALIDATOR needs to compare an invariant
to another to determine whether a patch falls into either
of the overfitting rules we defined above. INVALIDATOR

achieves this by comparing invariants syntactically and
semantically. If two invariants are not syntactically the same,
INVALIDATOR leverages a SMT solver, i.e., Z3 [45] to deter-
mine if they are semantically equivalent. Generally, two log-
ical formulaeA and B are equivalent if (A ⇒ B)∧(B ⇒ A).
For example, a >= b and b <= a are syntactically different
but are determined as semantically equivalent by Z3; Z3
determines that the formulae (a >= b ⇒ b <= a) ∧ (b <=
a ⇒ a >= b) is satisfiable and hence a >= b is equivalent
to b <= a.

4.1.3 Optimization via test selection

Our observation is that not all test cases are relevant to the
bug at hand. Before running DAIKON, Invalidator performs
test selection described in Algorithm 2 to select a subset of
passing test cases that are related to the bug to collect execu-
tion traces. This way, the reduced test suite helps Invalidator
optimizes for the running time by using DAIKON without
compromising the accuracy of Invalidator.

4.2 Syntactic-based Patch classifier

In case INVALIDATOR fails to reason about patch correct-
ness via invariant-based specification inference (described
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Algorithm 2: Test selection

Input:
• P: program
• P: set of modified methods
• T: set of test cases

Output: Related tests

1 R← ∅ ⊲ Set of related tests
2 foreach test in T do
3 t← Coverage(P, test) ⊲ Test coverage if t cover

at least one method ∈ P then
4 R← R ∪ {test}
5 end
6 end
7 return R

Fig. 4: Model architecture of the syntactic classifier. eb, ep,
ec are representation of buggy program, patched program
and groundtruth program, respectively. D(P,B) , D(P,G)
are distances from patched program to buggy program and
correct program

in Section 4.1), INVALIDATOR resorts to estimating the prob-
ability that a APR-patched program being overfitting by
measuring syntactic proximity of the patch to the buggy
and ground truth programs. Given a APR-patched program
P, INVALIDATOR first measures the syntactic differences
between P and the buggy program B, denoted as D(P,B),
and between P and its ground-truth program G, denoted
as D(P,G). INVALIDATOR employs a pretrained language
model (i.e., CODEBERT [46]) to extract syntactic features of
these programs and then uses comparison functions [47] as
distance measures to identify syntactic differences between

them. Finally, INVALIDATOR uses a machine learning model
to predict patch correctness. Figure 4 illustrates the classi-
fication pipeline of our syntactic-based classifier. Below, we
explain each component of the pipeline in detail.

4.2.1 Feature Extraction

The feature extraction layers aim to extract the embedding
vector (a.k.a. features) representing syntactic information
of buggy, patched, and correct programs. To do this, we
utilize CODEBERT [46], a powerful pre-trained model for
general-purpose representations of source code that have
been demonstrated its effectiveness on various software en-
gineering tasks [46], [48], [49], [50]. CODEBERT takes a code
fragment as its input, then uses a tokenizer (i.e., Roberta
tokenizer) to tokenize the given code to the sequence of
tokens. Finally, it forwards the sequence to a pre-trained
multi-layer bidirectional Transformer [51] to obtain a corre-
sponding numerical vector. More specifically, given a code
fragment, INVALIDATOR employs CODEBERT to represent
the code fragment as the vector defined as follows:

ecode = 〈v1, v2, . . . , vk〉 (1)

where k = 768 is the embedding dimension of CODEBERT.
For convenience, we denote eb, ep, ec as representation
of buggy program, patched program and correct program,
respectively.

4.2.2 Distance Measure

The goal of the distance measure layers is to build the
vectors that capture the syntactic differences between APR-
patched program and buggy program and correct program.
Inspired by prior works [24], [52] on program repair, we
leverage comparison functions [47] to represent various
types of syntactic differences. The distance measure layers
take as input the embedding vectors of buggy program,
patched program, and correct program (denoted by eb, ep,
ec, respectively) and output the vectors representing the
syntactic difference of APR-patched program compared to
buggy program and correct program. These vectors are
then concatenated to represent distance vectors, which have
2 × k + 2 dimensions where k is the dimension of code
embeddings (i.e., 768). In this paper, we use three com-
parison functions, consisting of Cosine similarity, Euclidean
distance, and element-wise subtraction. We briefly explain
these comparison functions below.

Element-wise subtraction. We perform element-wise sub-
traction for the embedding vectors of the APR-patched
program and the buggy program and the correct program
as follows:

esub1 = ep − eb

esub2 = ep − ec

Element-wise multiplication. We perform element-wise
multiplication for the embedding vectors of the APR-
patched program and the buggy program and the correct
program as follows:

emul

1
= ep ⊙ eb
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emul

2 = ep ⊙ ec

where ⊙ is the element-wise multiplication operator.

Euclidean Distance. We capture the distance between the
embedding vectors of the APR-patched program and the
buggy program and the correct program based on Euclidean
distance as follows:

eeuc1 = ‖ep − eb‖

eeuc
2

= ‖ep − ec‖

where ‖·‖ is the Frobenius norm.

Cosine Similarity. We capture the similarity between the
embedding vectors of the APR-patched program and the
buggy program and the correct program based on Cosine
similarity as follows:

esim
1

=
epeb

‖ep‖ ‖eb‖

esim2 =
epec

‖ep‖ ‖ec‖

where ‖·‖ is the Frobenius norm.

Distance vector. Finally, we concatenated the vectors re-
sulting from applying these three different comparison
functions to represent the syntactic distances from patched
program to buggy program and correct program as follows:

D(P,B) = esub
1
⊕ emul

1
⊕ eeuc

1
⊕ esim

1

D(P,C) = esub2 ⊕ emul
2 ⊕ eeuc2 ⊕ esim2

where ⊕ is concatenation operation, D(P,B) and D(P,G)
are distances from patched program to buggy program and
correct program.

4.2.3 Predictor

Given the above distance vectors, we leverage a machine
learning model to predict patch correctness from labeled
data. Following the finding of Tian et al. [24] that Logistic
Regression applied to BERT embeddings yields the best per-
formance in predicting patch correctness, we consider the
Logistic Regression algorithm as our predictor. Logistic re-
gression is a well-known machine learning (ML) algorithm
that predicts patch correctness based on a linear transform
and logistic loss function.

4.2.4 Correctness Prediction

INVALIDATOR classifies a patch as correct or overfitting
based on prediction score, i.e., probability that a given patch
is overfitting, produced by ML-based predictor. Let P(m)
denotes the prediction score of a APR-generated patch m.
We determine the correctness of a given patch m using the
following formula:

correctness (m) =

{

correct P(m) ≤ T

overfitting P(m) > T

where T is our classification threshold.

TABLE 1: Dataset for evaluating automated patch correct-
ness assessment techniques

Dataset Correct patches Overfitting patches Total
Xiong et al. [21] 30 109 139
Wang et al. [44] 216 450 666
DEFECTS4J [53] 223 0 223
Final dataset 377 508 885

TABLE 2: The statistics of evaluation and training dataset

Dataset Correct patches Overfitting patches Total
Training 331 340 671
Validation 16 59 75
Evaluation 30 109 139

5 EMPIRICAL EVALUATION

In this section, we empirically evaluate Invalidator on a
dataset of patches generated by well-known automated
program repair techniques for bugs in large real-world Java
programs. We discuss the dataset, experimental settings,
and metrics in Section 5.1. Section 5.2 lists our research
questions, followed by our findings in Section 5.3.

5.1 Experimental Settings

5.1.1 Dataset

To evaluate the effectiveness of automated patch correctness
assessment (APCA) techniques, we have collected a data set
of APR-generated patches whose correctness labels are man-
ually identified by independent developers and researchers.
Particularly, we used 220 patches released by Xiong et
al. [21] and 902 patches released by Wang et al. [44]. Follow-
ing previous works [18], [24], we only consider patches from
four widely-used projects in DEFECTS4J: Chart, Time, Lang,
and Math. As a result, we have 139 patches and 666 patches
from Xiong et al.’s and Wang et al.’s dataset, respectively.
Next, to reduce data imbalance issues, i.e., very few APR-
generated patches are actually labeled as correct, we also
supplement the dataset with developer-written patches as
supplied in the DEFECTS4J dataset following [24]. This
results in 1028 patches including 469 correct patches and
559 overfitting patches.

Following previous work [24], [21], [24], [23], we con-
sider 666 patches from Wang et al.’s dataset and 223 de-
veloper’s patches from DEFECTS4J [53] as the training and
validation set and 139 patches from Xiong et al. [21] as
evaluation set. As there may be a duplication between Wang
et al. ’s dataset, Defects4J’s patches and Xiong et al.’s dataset,
we removed the duplicated patches to avoid data leakage.
Particularly, we removed a patch from the training and
validation set if it is syntactically equivalent to a patch in
the evaluation set. As a result, we obtained 746 (out of 889)
patches, including 347 correct patches 559 and overfitting
patches, for the training and validation phase. From the 746
patches, we use 90% of patches (671 patches) for training our
learning model, and the remaining 75 patches are used for
validation. Table 1 and Table 2 shows the details of patches
considered in our experiments and the characteristics of our
training, validation and evaluation datasets respectively.



9

5.1.2 Evaluation Metrics

By using the data set described in Section 5.1.1, we assess
the effectiveness of automated patch correctness assessment
(APCA) techniques by comparing the labels produced by
APCA versus the ground truth labels. Furthermore, we aim
to assess how many patches an APCA technique produces
that match with that of the ground truth labels. Specifically,
we use standard metrics of classification problems [54],
[55], Recall (Equation 2), Precision (Equation 3), Accuracy
(Equation 4) and F-Measure (Equation 5); they are defined
by the following metrics:

• True Positive (TP): a generated patch is labeled as
“overfitting” by both an APCA technique and the
ground truth.

• False Positive (FP): a generated patch is labeled as
“overfitting” by an APCA technique but is labeled as
“correct” by the ground truth.

• True Negative (TN): a generated patch is labeled
as “correct” by both an APCA technique and the
ground truth.

• False Negative (FN): a generated patch is labelled as
“correct” by an APCA technique, but is labelled as
“overfitting” by the ground truth.

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

F−Measure =
2 x Recall x Precision

(Precision + Recall)
(5)

Among these evaluation measures, Recall verifies
whether an approach can successfully classify overfitting
patches. A higher Recall is demanded by developers as
we do not want to waste their efforts on analyzing a
substantial number of overfitting patches [15]. Meanwhile,
Precision measures the proportion of discarded patches by
an approach that is genuinely overfitting. A higher Precision
is desired by program repair research as we do not want to
discard correct patches [23].

However, the comparison of APAC techniques that relies
only on Recall or Precision may be incomplete. For example,
a APAC technique can only consider patches as overfitting
if it violates strict conditions (e.g., a high confidence value)
to achieve a higher Precision, which could result in a low
Recall. On the contrary, an approach can classify all patches
as overfitting to achieve perfect Recall, which results in low
Precision. To address these issues, we consider F-Measure
and Accuracy as additional evaluation metrics to measure
the performance of APAC techniques, F-Measure seeks a
balance between Recall and Precision while Accuracy is the
comprehensive evaluation of all TP, FP, TN, and FN.

Besides, we also consider Area Under the Curve ( de-
noted as AUC), which is defined as follows.

AUC =
S0 − n0(n0 + 1)/2

n0n1

(6)

where n0 and n1 are the numbers of overfitting and correct
patches, respectively, and S0 = Σri, where ri is the rank
of the ith overfitting patch in the descending list of output
probability produced by each model.

AUC is a widely-used metric to evaluate the effectiveness
of threshold-dependent classifiers [56], [57]. In our paper,
AUC is essential to compare the performance of syntactic-
based classifiers.

5.1.3 Implementation Details

For INVALIDATOR, we implement the proposed approach
using Python programming language. For CODEBERT
model, we use HuggingFace’s Transformers framework 2

as recommended by their authors in CODEBERT’s github
repository 3. With respect to the threshold T of syntactic-
based classifier, we set the default threshold at 0.975. To
choose a classification threshold, we constraint the threshold
to avoid filtering out any correct patches as following prior
works [21], [24]. Note that, we tune our classification thresh-
old on an independent validation set (see details in Section
5.1.1) instead of evaluation set as prior works [21], [24]
to avoid overfitting. We also investigate the impact of the
threshold on the performance of INVALIDATOR in Section 5.

With respect to baseline techniques, we collect results
of ODS, PATCHSIM, ANTI-PATTERNS, and BERT + LR

from prior works [23], [21], [24]. For DIFFTGEN and GT-
INVARIANT, we run their implementation to obtain their
prediction for Xiong et al. dataset due to the lack of the
result in the literature.

5.2 Research Questions

Our evaluation aims to answer these research questions:

RQ1: How effective is our approach to validate patches generated
by automatic repair tools?
The research question concerns the ability of INVALIDATOR

for identifying overfitting patches generated by automated
program repair techniques. To demonstrate the value of
our approach for automated patch correctness assessment
tasks, we conduct an experiment in a dataset of 885 APR-
generated patches (as described in Section 5.1.1) in terms
of Precision, Recall, Accuracy and F-Measure. Then, we com-
pare our approach to state-of-the-art baseline techniques,
namely:

• RGT: Ye et al. [43] proposed to use a testing pro-
cedure, named Random Testing with Groundtruth
(RGT) [58], for APAC. Particularly, RGT automat-
ically generates tests based on developer-patched
programs, which encodes the correct program be-
havior. And then if any automatically generated test
fails on a APR-patched program, RGT considers the
program as overfitting.

• ODS: Ye et al. [23] proposed ODS, an overfitting
detection system. ODS builds machine learning clas-
sifiers based on 4,199 manually-crafted features for
classifying overfitting patches;

• BERT + LR: Tian et al. [24] proposed learning-based
APAC technique that utilize BERT [59] and Logistic

2. https://huggingface.co/docs/transformers/index
3. https://github.com/microsoft/CodeBERT
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Regression to learn representations of code changes
from historical data to predict the correctness of
APR-generated patches. In this paper, we refer to
their technique as BERT + LR;

• PATCHSIM: Xiong et al. [21] proposed a dynamic
APAC technique based on the similarity of execu-
tion trace similarity. In this paper, we refer to their
technique as PATCHSIM;

• DIFFTGEN: Xin et al. [18] proposed a APAC tech-
nique that identifies overfitting patches through test
case generation. DIFFTGEN is the closest baseline
related to our approach. Both INVALIDATOR and
DIFFTGEN assume the ground truth patches are
available;

• ANTI-PATTERNS: In [25], the authors proposed seven
generic categories of program transformation to de-
tect overfitting patches. In this paper, we refer to their
technique as ANTI-PATTERNS;

• GT-INVARIANT: Recently, Yang and Yang [26] found
that the majority of the overfitting patches ex-
pose different runtime behaviors captured by GT-
INVARIANT’s invariant [22]. Based on their findings,
Wang et al. [44] adopt a simple heuristic that consid-
ers a machine generated-patch is overfitting if there is
inferred invariant of this patch is different from that
of the correct program. In this paper, we refer to their
technique as GT-INVARIANT;

RQ2: How effective is our syntactic-based classifier?

This research question investigates the effectiveness of
our syntactic-based classifier in assessing patch correctness.
Toward this, we conduct experiments to answer two sub-
questions:

• RQ2.1: How does our syntactic-based classifier compare
to existing techniques? In this research question, we
compared our syntactic-based classifier to existing
techniques, including ODS and BERT+LR in terms
of Precision, Recall Accuracy, and F-Measure as RQ1.
Besides, we also compare the performance of these
techniques on AUC, a widely-used metric to evaluate
the effectiveness of threshold-dependent classifiers.

• RQ2.2: How do our syntactic features compare to existing
features? In this research question, we investigate
the effectiveness of our syntactic features extracted
from CODEBERT, compared to syntactic features ex-
tracted from existing methods, i.e., ODS and BERT.

RQ3: How does the classification threshold affect the overall
performance?

INVALIDATOR uses a classification threshold to decide
whether a patch is overfitting based on the prediction score
of Machine Learning-based predictors. For the first two
research questions, we set the classification threshold at
0.975, which produces the highest Precision on the valida-
tion dataset for Invalidator. In this research question, we
investigate the impact of threshold sensitivity on the perfor-
mance of INVALIDATOR. To do this, we perform experiments
towards providing answers for two sub-questions:

• RQ3.1: How does the classification threshold affect the
overall performance? We systematically set different

values for this threshold and investigate how this
threshold affects the result of INVALIDATOR

• RQ 3.2: How does threshold sensitivity affect our ap-
proach compared to other techniques? The research ques-
tion aims to investigate the impact of threshold sensi-
tivity on the performance of INVALIDATOR compared
to existing threshold-dependent techniques such as
PATCHSIM or ODS.

RQ4: Which components of INVALIDATOR contribute to its
performance?

This research question analyzes the contribution of dif-
ferent INVALIDATOR’s components to the overall perfor-
mance. We first investigate the contribution of semantic
and syntactic classifiers to the overall performance of IN-
VALIDATOR. Then, we investigate the impact of the design
choice of each component, i.e., the granularity of invariants
and overfitting rules, on the performance of INVALIDATOR.
Specifically, we perform experiments to answer three sub-
questions as follows:

• RQ4.1: How does semantic and syntactic classifier affect
the performance of our approach? INVALIDATOR con-
tains two main components, i.e., semantic classifier
and syntactic classifier. In this research question, we
investigate the contribution of each classifier in an
ablation study by dropping each classifier and ob-
serving the change in INVALIDATOR’s performance.

• RQ4.2: Do invariants inferred from executed methods
boost the performance of Invalidator compared to invari-
ants inferred from buggy methods only? By default,
INVALIDATOR classifier considers invariants inferred
from all methods executed by a given test suite
instead of invariants inferred from buggy methods
only (i.e., methods modified by human developers in
the correct program) as prior works [44], [26]. In this
research question, we investigate the effectiveness of
INVALIDATOR with these two granularities.

• RQ4.3: How do overfitting rules affect the performance
of our semantic classifier? By default, our semantic
classifier uses a combination of both the Overfitting-
1 and Overfitting-2 rules described in Section 4.1.2
for identifying overfitting patches. In this research
question, we individually compare these two over-
fitting rules to evaluate their contribution to INVAL-
IDATOR’s effectiveness.

5.3 Findings

5.3.1 RQ1: Effectiveness

We report the comparison of our approach, INVALIDA-
TOR against baseline techniques consisting of RGT [43],
ODS [23], BERT+LR [24], PATCHSIM [21], DIFFTGEN [18],
ANTI-PATTERNS [25], GT-INVARIANT [26] on 139 APR-
generated patches collected by Xiong et al. [21]. Table 3
presents the detailed results with respect to evaluation
metrics given in Section 5.1.2, including: Recall, Precision,
Accuracy and F-Measure. We highlight the best result for each
evaluation metrics as bold numbers. The bold red number
denotes the metrics for which the Invalidator shows the
highest results among the techniques. Overall, INVALIDA-
TOR successfully identifies correctly 86 out of 109 overfit-
ting patches and misclassified 3 out of 30 correct patches,
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TABLE 3: Comparison of the effectiveness of Invalidator with the state-of-the-art techniques. The bold number denotes the
best result for Accuracy and F1.

Techniques TP FN FP TN Recall Precision Accuracy F1
ANTI-PATTERN 27 82 1 29 0,25 0,96 0,40 0,39
DIFFTGEN 16 93 0 30 0,15 1,00 0,33 0,26
PATCHSIM 62 47 0 30 0,57 1,00 0,66 0,73
GT-Invariant 59 50 7 23 0,54 0,89 0,59 0,67
BERT + LR 43 66 0 30 0,39 1,00 0,53 0,57
ODS 70 39 5 25 0,64 0,93 0,68 0,76
RGT 70 39 5 25 0,64 0,93 0,68 0,76
Invalidator 86 23 3 27 0,79 0,97 0,81 0,87

equivalent to scores of 0.79, 0.97, 0.81 and 0.87 in terms of
Recall, Precision, Accuracy and F-Measure, respectively. This
implies that Invalidator outperforms all baselines in Recall,
Accuracy and F-Measure and obtains a good Precision of 0.97.
We present more details below.

Accuracy. Table 3 shows that INVALIDATOR successfully
identifies correctly 86 out of 109 overfitting patches and 27
out of 30 correct patches, equivalent to Accuracy of 0.81. This
implies that Invalidator outperforms the best baselines (i.e.,
ODS and RGT) by 19 % and shows improvements of 23% -
146% compared to the other baselines.

F-Measure INVALIDATOR outperforms the two best base-
lines (i.e. ODS and RGT) by 14 %. In detail, INVALIDA-
TOR outperforms BERT+LR, PATCHSIM, DIFFTGEN, ANTI-
PATTERNS, GT-INVARIANT by 54%, 20%, 239%, 120%, 29%,
respectively. This is mainly because INVALIDATOR success-
fully identifies 79% of overfitting patches while the best
baselines only filter out 64% of overfitting patches while
still keeping an acceptable precision of 0.97.

Recall. In terms of Recall, INVALIDATOR achieves the im-
provements of 23% (0.79 vs. 0.64) compared to the best base-
lines (i.e., ODS and RGT). More specifically, INVALIDATOR

outperforms RGT, ODS, BERT+LR, PATCHSIM, DIFFTGEN,
ANTI-PATTERNS, GT-INVARIANT by 23%, 23%, 100%, 39%,
438%, 219%, 46%, respectively. This is mainly because IN-
VALIDATOR utilizes both syntactic and semantic reasoning
while other techniques only consider semantic or syntax
alone.

Precision. In terms of Precision, INVALIDATOR achieves
the scores of 0.97, performing better than ANTI-PATTERNS,
ODS, RGT and GT-INVARIANT, which show Precision of
0.96, 0.93, 0.93 and 0.89, respectively. With respect to
BERT+LR, PATCHSIM and DIFFTGEN, our approach slightly
underperforms these techniques in terms of Precision. How-
ever, BERT+LR and PATCHSIM avoid filtering out correct
patches by directly tuning the threshold of their classifier on
the evaluation set, raising concerns of overfitting on the set.
Different from these techniques, we tune our classification
threshold on an independent validation set (as presented
in Section 5.1.3) to avoid overfitting, leading to lower per-
formance of Precision than BERT+LR and PATCHSIM on the
evaluation set. Meanwhile, DIFFTGEN, although having a
perfect Precision (i.e., 1.0), is much less effective in filtering
out overfitting patches reflected by a low Recall of 0.25.

Complementarity with ODS and RGT.We also perform a
detailed analysis on the overfitting patches correctly classi-

Fig. 5: Intersection on the correctly classifier overfitting
patches by INVALIDATOR, ODS and RGT

fied by INVALIDATOR, ODS, and RGT. Figure 5 shows the
intersection of their correctly classified overfitting patches.
We can see that these techniques only detected 31/109
overfitting patches together, accounting for less than 40%
of overfitting patches correctly classified by each technique.
Meanwhile, INVALIDATOR, RGT, and ODS individually de-
tect 10, 7, and 5 overfitting patches that are not detected by
one another, respectively. More interestingly, the overfitting
patches correctly classified by the three techniques cover
most of the overfitting patches (107/109). These results
suggest that the three techniques are complementary and
can be used together to obtain a better patch correctness
assessment.

Case study of unique overfitting patches. To further pro-
vide insights about our approach, we manually analyze
unique overfitting patches that are possibly detected with
the help of the novel techniques in INVALIDATOR. In Figure
6, we give an example of an overfitting patch generated for a
bug Math-58, which is detected as overfitting by INVALIDA-
TOR but not RGT and ODS. In this bug, method fit() (line
3 in Figure 6b) is used to fit a Gaussian function to the ob-
served points. Ideally, the method must catch the exceptions
of observed points having a negative standard deviation
and return NaN values. To do this, the method must call
method fit2() to initialize a new Gaussian function and
catch the exceptions before calling method fit3() to fit
the Gaussian function. In the buggy version, fit() directly
initializes a new Gaussian function and calls fit3() (line
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(a) An overfitting patch generated by Nopol [4]

(b) The correct patch written by human developers

Fig. 6: An overfitting patch generated by Nopol and the
human-written patch for Math-58

5 in Figure 6b). Consequently, the buggy version misses
the observed points having a negative standard deviation
and throws NotStrictlyPositiveException. As we
can see in Figure 6a, Nopol fixes the bug by adding the con-
dition param[2] == 0 (line 6). In this way, if the observed
points have a negative standard deviation, i.e., param[2]
< 0, the NotStrictlyPositiveException (line 8) is
unreachable. Consequently, the failing test case is plausibly
passed, but the program is still incorrect. However, as it
is no longer possible to trigger this error, RGT, which
relies on test case generation, fails to detect the different
behaviors between the overfitting patch and the correct
patch. However, INVALIDATOR, which relies on program
invariants, still can correctly detect the overfitting patch.
Indeed, in both buggy program and Nopol’s patched pro-
gram, INVALIDATOR found the invariant f.getClass()
== Gaussian$Parametric.class at the entry point
of method fit3(), indicating that the Gaussian func-
tion is directly initialized in method fit(). Meanwhile,
the Gaussian function should be initialized in fit2()

reflected by an invariant of the developer-patched pro-
gram f.getClass() == GaussianFitter$1.class at
the entry point of method fit3(). We can see that Nopol’s
patch satisfies our Overfitting-2 rule, i.e., maintaining error
behavior. Therefore, INVALIDATOR can correctly classify the
patch as overfitting. Another example can be seen in Section
3, in which an overfitting patch generated by Kali [27]
cannot be detected by RGT but by INVALIDATOR as the
patch satisfies our Overfitting-1 rule, i.e., violating correct
behavior.

Answers to RQ1: INVALIDATOR yields very promis-
ing performance on assessing the correctness of
APR-generated patches (Accuracy at 0.81 and F-
Measure at 0.87) and outperforms the best baseline
by 19% and 14% in terms of Accuracy and F-Measure,
respectively. Beside, the complementary use of three
best performing techique can cover 107/109 overfit-
ting patches.

5.3.2 RQ2: Effectiveness of syntactic-based classifier

[RQ2.1: Our syntactic-based classifier vs. existing tech-
niques]
In this sub-question, we compare the performance of our
syntactic-based classifier with two existing learning-based
APAC techniques: ODS and BERT+LR. Table 4 presents
the effectiveness of our approach and two baselines on six
evaluation metrics including Accuracy, F1 and AUC. The
experimental results demonstrate that INVALIDATOR signifi-
cantly outperforms two baseline over six evaluation metrics.
Particularly, INVALIDATOR yields an Accuracy of 0.73 and F1
of 0.80, outperforming the best baseline, i.e., ODS, by 6%
and 5%, respectively. Note that ODS requires manual efforts
to extract hand-crafted features while our patch classifier
automatically extracts features based on labeled datasets.
Compared to BERT+LR, which also uses automatically-
extracted features, our syntactic-classifier shows substantial
improvement of 38% and 41% in terms of Accuracy and F1,
respectively. Moreover, INVALIDATOR also improves ODS
and BERT+LR by 6% and 16% over AUC, indicating that
our syntactic classifier has a better discriminative capability
than existing techniques regardless of thresholds.

Answers to RQ2.1: Our syntactic-based classifier
significantly outperforms existing techniques over
all evaluation metrics. Notably, our classifier also
improves the best baseline by 6% in terms of AUC,
indicating it is more effective than existing tech-
niques regardless of thresholds.

[RQ2.2: Our syntactic features vs. existing syntactic fea-
tures]

In this sub-question, we compare the performance of our
syntactic features extracted from CodeBERT with existing
ones extracted from ODS and BERT regarding our syntactic-
based classifier. To ease our presentation, we refer to the
features as CodeBERT’s, ODS’s and BERT’s features, re-
spectively. Table 5 presents the effectiveness of six variants
of the syntactic-based classifier using three syntactic fea-
tures: ODS’s, BERT’s, and CodeBERT’s features with and
without ground-truth knowledge. The evaluation results
showed that CODEBERT’s features significantly outperform
ODS’s and BERT’s features. Particularly, with ground-
truth knowledge, BERT’s features show an improvement
of 9%, 8%, and 7% regarding Accuracy, F1, and AUC, re-
spectively. Meanwhile, the improvements without ground-
truth knowledge are 5%, 7%, 17%. Besides, we also can see
that our classifier with ground-truth knowledge improves
the variants without the knowledge regardless of syntactic
features over three metrics: Accuracy, F1, and AUC. The
improvement is especially substantial regarding threshold-
dependent techniques, i.e., Accuracy and F1. These results
indicate the advantage of adding ground truth knowledge
for syntactic-based classifiers.

Answers to RQ2.2: CodeBERT’s features are the
most suitable features for our syntactic-based classi-
fier. Besides, ground truth knowledge is helpful for
syntactic-based classifiers.
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TABLE 4: Comparison of the effectiveness of INVALIDATOR’s syntactic-based classifier with the state-of-the-art techniques.
The bold number denotes the best result for Accuracy, F1 and AUC.

Techniques TP FN FP TN Recall Precision Accuracy F1 AUC
BERT+LR 43 66 0 30 0.39 1.00 0.53 0.57 0.77
ODS 70 39 5 25 0.64 0.93 0.68 0.73 0.84
INVALIDATORSyn 74 35 3 27 0.68 0.96 0.73 0.80 0.89

TABLE 5: Comparison of the effectiveness of CODEBERT features with ODS and BERT features. The bold number denotes
the best result for Accuracy. F1 and AUC.

Ground-truth Techniques TP FN FP TN Recall Precision Accuracy F1 AUC
BERTwo−gt 33 76 2 28 0.30 0.94 0.44 0.46 0.71

No ODSwo−gt 25 84 0 30 0.23 1.00 0.40 0.37 0.77
CodeBERTwo−gt 36 73 2 28 0.33 0.95 0.46 0.49 0.83
BERTgt 68 41 5 25 0.66 0.92 0.69 0.77 0.83

Yes ODSgt 30 79 0 30 0.8 0.94 0.43 0.43 0.81
CodeBERTgt 74 35 3 27 0.68 0.96 0.73 0.77 0.89

Fig. 7: The performance of Invalidator with different classi-
fication thresholds on evaluation set

5.3.3 Threshold Sensitivity

[RQ3.1: The impact of threshold sensitivity on the perfor-
mance of Invalidator]
Recall that INVALIDATOR uses a threshold, which ranges
from 0 to 1, to classify whether a patch is overfitting
based on a prediction score produced by Machine Learning
predictors as defined in Section 4.2.4. In this sub-question,
we investigate the performance of INVALIDATOR in terms
of Recall, Precision, F-Measure and Accuracy with different
classification threshold in range (0, 1). The impact of the
classification threshold on the performance of our approach
is illustrated in Figure 7.

We can see that the Recall holds steady at around 1.0
when the classification threshold in range of (0.0, 0.65), then
slightly decreases to about 0.94 (at threshold of 0.85) before
dropping to about 0.53 at maximum threshold of 1.0. On
the contrary, as the classification threshold increases, the
Precision gradually increases from 0.79 to 0.97. Notably,
INVALIDATOR’s precision is always higher than 0.8 and
around 0.9 most of thresholds. These results indicate that
the assessment of INVALIDATOR is reliable.

With respect to Accuracy and F-Measure, the performance

of INVALIDATOR shares a similar trend on these metrics
according to the variation of the classification threshold. In
details, Accuracy and F-Measure consistently increase from
0.79 and 0.89 to 0.92 and 0.95, respectively, when the thresh-
old increases from 0.0 to about 0.6. Then, these metrics
slightly decrease to 0.84 of Accuracy and 0.89 of F-Measure
at the threshold of 0.9 before dropping to below 0.7 at
maximum threshold of 1.0.

In conclusion, the results indicate that the classification
threshold, although affects the Recall and Precison, has a
limited impact on F-Measure and Accuracy. This is important
for practitioners to choose a suitable threshold according to
their demand without affecting the discriminant capability,
which is reflected by F-Measure and Accuracy, of APAC
techniques.

Answers to RQ3.1: Despite the change of Precision
and Recall, INVALIDATOR still achieves promising
overall performance, i.e., F-Measure and Accuracy at
above 0.8, over a large range of classification thresh-
old, i.e., (0.1 - 0.9), on both validation and evaluation
set.

[RQ3.2: Invalidator vs. Existing threshold-dependence
techniques]

In this sub-question, we compare the performance,
reflected by F-Measure and Accuracy), of four threshold-
dependence techniques consisting of INVALIDATOR,
ODS [23], BERT+LR [24] and PATCHSIM [21] with nine
different threshold in range of (0.1, 0.9). The impact of the
classification threshold on the performance of threshold-
dependence techniques is illustrated in Figure 8. The
results yield two main findings. First, the classification
threshold has a limited impact on the performance of
INVALIDATOR and PATCHSIM. Meanwhile, BERT+LR and
ODS only achieve good performance in threshold range of
(0.1, 0.4) before witnessing a significant decrease of both
F-Measure and Accuracy when the threshold increases from
0.4 to 0.9. The finding indicates that INVALIDATOR and
PATCHSIM are more stable than BERT+LR and ODS with
respect to the variation of classification threshold. Second,
INVALIDATOR, with an arbitrary threshold, performs better
than the best result of each baseline. The finding indicates
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(a) F-Measure

(b) Accuracy

Fig. 8: The performance of Invalidator, ODS, BERT+LR and
PATCHSIM with different classification thresholds

that INVALIDATOR is the most effective technique among
threshold-dependence APAC approaches.

Answers to RQ3.2: INVALIDATOR is the most
effective and stable technique among threshold-
dependence APAC approaches.

5.3.4 Ablation Study

[RQ4.1: The impact of semantic-based and syntactic-
based classifier on the performance of Invalidator] In this
experiment, we evaluate the relative contribution of IN-
VALIDATOR’s semantic versus structural classifier for patch
correctness assessment. Table 6 shows the results of our
experiments. INVALIDATORsem, INVALIDATORsyn refer to
semantic and syntactic-based classifier, respectively. In the
ablation study, we can observe that INVALIDATOR without
these classifiers suffer from different degrees of perfor-
mance loss. Specifically, removing INVALIDATORsyn leads

to a decrease of 26% and 23% in terms of Accuracy and
F1; meanwhile without INVALIDATORsem, INVALIDATOR’s
performance also drops by 11% and 8%, respectively. Also,
we can see that our syntactic-based classifier shows a bet-
ter performance than our semantic-based classifier. This is
mainly because our semantic-based classifier can only detect
56 overfitting patches compared to 74 of our syntactic-based
classifier. One potential reason behind the phenomena is
that our semantic-based classifier depends on our current
test suite, which may be an incomplete and invariant gen-
erator, i.e., Daikon. Therefore, though our semantic-based
classifier can reveal hidden behavior differences between
the APR-patched and ground truth programs to detect over-
fitting patches, its effectiveness can still be bounded by the
abovementioned factors. However, the semantic-based clas-
sifier is still important for our approach to dealing with the
threshold sensitivity of syntactic-based classifiers. Indeed,
our semantic-based classifier is threshold-independent, al-
lowing its performance to be considered a lower bound for
the performance of INVALIDATOR. Therefore, INVALIDATOR

still can work well with a strict classification threshold, mak-
ing INVALIDATOR become the most stable technique among
threshold-dependence APAC approaches, as we can see in
the RQ 3.2. These results suggest that both semantic and
syntactic-based classifiers are essential for the performance
of INVALIDATOR.

Answers to RQ4.1: Our ablation study shows that
both semantic and syntactic-based contribute to the
effectiveness of INVALIDATOR.

[RQ4.2: The impact of invariant granularity on the perfor-
mance of Invalidator]
In this sub-question, we investigate the performance of our
semantic classifier with invariant inferred from two different
granularities: buggy methods and executed methods, i.e.,
methods executed by test cases. As shown in Table 7, the
invariants inferred from executed methods can boost the
performance of our semantic classifier in APAC by 28%
at Accuracy and 31% at F-Measure. The key reason for the
improvement is that behavioral differences between APR-
generated patches and correct patches exist in methods
called by a statement of buggy methods. Hence, the supple-
ment of invariant inferred from all executed methods helps
our semantic classifier to detect more overfitting patches.

Answers to RQ4.2: The supplement of invariant in-
ferred from all executed methods helps our semantic
classifier boost the performance by 31% at Accuracy
and 35% at F-Measure

[RQ4.3: The impact of different overfitting rules on the
performance of Invalidator]
In this sub-question, we investigate the impact of each over-
fitting rule on the performance of our semantic classifier.
As shown in Figure 9 the Overfitting-1 and Overfitting-2 con-
tributes 24 and 42 overfitting patches, respectively, among
56 patches detected by our semantic classifier. Moreover,
there are 8 overfitting patches violating both overfitting
rules. The results indicate that Overfitting-2 rule contributes
to our semantic classifier much more than Overfitting-1.
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TABLE 6: Ablation Study. The InvalidatorSyn and InvalidatorSem denotes INVALIDATOR’s syntactic and semantic
classifiers, respectively. The bold number denotes the better result in each evaluation metrics

Techniques TP FN FP TN Recall Precision Accuracy F1
Invalidator 86 23 3 27 0,79 0,97 0,81 0.87
-w/o InvalidatorSyn 56 53 2 28 0,51 0,97 0,60 0.67
-w/o InvalidatorSem 74 35 3 27 0,68 0,96 0,73 0.80

TABLE 7: Overall performance of Invalidator’s semantic clas-
sifier with different invariant granularity: buggy methods
and executed methods. The bold number denotes the better
result in each evaluation metrics

Granularity Recall Precision F1 Accuracy
Buggy methods 0,35 0,95 0,51 0,47
Executed methods 0,51 0,97 0,67 0,60

Fig. 9: The impact of overfitting rules on the performance of
Invalidator’s semantic classifier

Answers to RQ4.3: Overfitting-2 rule contributes to
INVALIDATOR much more than Overfitting-1 (42 vs.
24 overfitting patches).

6 DISCUSSION

6.1 Time efficiency

With respect to time efficiency, we limit 5 hours for invariant
inference for each patch in our dataset. In case invariants of
a patch cannot be generated on time, we directly pass the
patch to our syntactic classifiers. Meanwhile, for assessing
the correctness of 139 patches in our evaluation dataset, i.e.,
Xiong et al. dataset INVALIDATOR took 15.5 hours (i.e., about
7 minutes for each patch). The results show that assessment
time of INVALIDATOR is reasonable but the invariant in-
ference is time-consuming. However, invariant inference is
partially reusable as users can reuse the generated invariants
for buggy and patched programs for each patch. Moreover,
users can change the time limit for invariant inference if
they only have the limited time budget. However, even in
the worst case, the performance of INVALIDATOR will only
drop to the performance of syntactic classifier, which still
outperform the state-of-the-art baselines. Thus, we would
like to leave the limitation of invariant inference for future
works.

6.2 Threats to validity

External validity. Threats to external validity correspond
to the generalizability of our findings. Our study considers
885 patches generated from 21 popular APR techniques.
This may not represent all APR techniques thus may affect
the generalizability of our study. We tried to mitigate this
risk by selecting a data set that is commonly used for
patch validation in the APR community [21], [17], [44], [60].
Another threat to external validity is that patches in our
dataset are only generated for a dataset Defects4J. This may
not represent all bugs in real-world projects and thus may
affect the generalizability of our findings. Unfortunately,
beside Defects4j, there is only one labeled dataset for patch
correctness assessment, i.e., QuixBugs.QuixBugs, however,
only contains small programs (approximately 35 lines of
code on average) that implement basic algorithms such as
Depth First Search or Knapsack. These programs differ from
our focus in the paper: industrial programs. Meanwhile,
obtaining ground-truth labels for patches for industrial pro-
grams datasets such as Bears and Bugs.jar requires extensive
human efforts [17]. Therefore, we would like to leave the
evaluation for future work.

Internal validity. Threats to internal validity refer to pos-
sible errors in our implementation and experiments. To
mitigate this risk, we have carefully re-checked our imple-
mentation and experiments.

Construct validity. Threats to construct validity correspond
to the suitability of our evaluation. The main threat is that
the correctness of the patches may be subjectively biased
because they are manually labeled by author annotation as
mentioned in Section 2.1. To mitigate this risk, we collected
the classification results, which come from reliable sources
and are widely used by the community.

7 RELATED WORK

7.1 Automated Program Repair

Our study investigates patches generated by several pop-
ular APR techniques, including GENPROG [14], KALI [2],
NOPOL [4], HDREPAIR [3] and ACS [7]. GENPROG and
KALI are heuristic-based techniques which construct a
search space by using mutation operations then leverage
genetic programming to find the solution. NOPOL uses Sat-
isfiability Modulo Theories to synthesize repair for buggy
conditional statements. HDREPAIR mines historical bug fix
patterns to guide the heuristic search. ACS attempts to gen-
erate high-quality repairs for buggy conditional statements
by using historical fix templates. Beyond these techniques,
recently, CAPGEN [61], SIMFIX [62], FIXMINER [28], and
TBAR [10] have been proposed to fix bugs automatically
based on frequent fix patterns. Other approaches (e.g.,
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SEQUENCER [29], DLFIX [63], COCONUT [64]) propose to
generate patches by using deep learning models.

7.2 Overfitting Problem

Early APR techniques widely leverage test suites, which
are often practically weak and incomplete, as an oracle to
guarantee patch correctness. This leads to the overfitting
problem, in which APR-generated patches pass the val-
idation test suite but are still incorrect [12]. Many APR
techniques, e.g., GENPROG [14], RSREPAIR [27], AE [32],
ANGELIX [6] have been shown to suffer from the overfitting
issue [2], [13].

The overfitting problem has progressively been an im-
portant challenge in APR. Monperrus et al. criticized that
the conclusiveness of techniques that keep patches and their
correctness labels private is questionable [65]. Le et al. also
suggested making publicly available to the community au-
thors’ evaluation on patch correctness [17]. Since then, APR
techniques have publicly released their results and labels of
APR-generated patches. Authors of APR techniques often
assess patch correctness by either using: (1) an independent
test suite different from the test suite used for repair to
test the generalizability of the generated patches [17], or
(2) manual inspection to compare APR-generated patches
with the ground truth [61], [28], [10], [66]. Le et al. show
that automated validation via independent test suite is less
effective than manual validation, but there is a potential risk
of human bias when using manual validation [17]. Also,
manual validation requires repetitive and expensive tasks,
which automated validation can complement.

In this work, we use a data set of 1028 APR-generated
patches for large real-world programs whose correctness
labels have been released by recent popular work [67], [21],
[17], [60], [44]. The correctness labels of the patches have
been carefully examined by the community, e.g., researchers
and independent developers, and thus serve as reliable
ground truth labels to assess the effectiveness of APAC
techniques that we will discuss next.

7.3 Automated Patch Correctness Assessment

To avoid the potential bias of manual patch validation,
several techniques have been proposed to predict patch cor-
rectness automatically. These techniques can be categorized
into different directions: (1) semantic-based APAC and (2)
syntactic-based APAC. In this section, we briefly review
well-known techniques for each direction.

7.3.1 Semantic-based APAC

With respects to semantic-based APAC, the closely related
works to our work are DIFFTGEN proposed by Xin and
Reiss [18] and RGT proposed by Ye et al. [43] Similar to our
work INVALIDATOR, DIFFTGEN and RGT identifies patch
correctness by relying on perfect oracles such as correct pro-
grams provided by human developers. To do so, DIFFTGEN

uses EVOSUITE, an automated test generation technique
to generate an independent test suite from the developer-
patched (ground truth) program. DIFFTGEN considers a
APR-generated patch as overfitting if there are any behav-
ioral differences between the APR-patched program and the
ground truth program. The fundamental difference between

these approaches and INVALIDATOR’s semantic-based class-
fiier is that, instead of generating additional test cases,
INVALIDATOR only uses the original test suite and infers
program invariants to generalize the desired behaviors of
the program under test. This way, INVALIDATOR generates
more abstract program specifications in the form of program
invariants to effectively guard against unintended behaviors
of the programs under test.

Yu et al. [33] also generated additional test cases from the
developer-patched program to detect two kinds of overfit-
ting issues: incomplete fixing and regression introduction.
However, their approach only works on semantic-based
APR techniques while INVALIDATOR can identify overfitting
patches generated by all APR approaches. Recently, Yang
and Yang explored that majority of the studied plausible
patches (92/96) expose different modifications of runtime
behaviors captured by the program invariants, compared to
correct patches [26]. However, this work does not propose
any techniques to validate APR-generated patches. Based
on findings of Yang and Yang, Ye et al. [68], and Wang et
al. [44] have also used a simple heuristic based on DAIKON’s
invariants to identify patch correctness. These heuristics
consider a patch as overfitting if it violates any invariants
inferred from the developer-patched program. However,
developers may add other functions which are unrelated
to actual bugs, leading to redundant invariants. Hence, this
overfitting behavior is weak and sensitive; that is the reason
why they produce many false positives [68]. Meanwhile,
Invalidator identifies patch correctness based on carefully
designed overfitting behaviors by comparing invariants in-
ferred from both buggy program and developer-patched
program so that our technique essentially only produces a
low false-positive rate, as shown in our evaluation.

Less relevant to our approach in this work are several
techniques attempting to identify patch correctness without
knowing perfect oracles. Yang et al. [69] proposed OPAD,
which employs test-suite augmentation based on fuzz test-
ing and uses the crash-free behavior as the oracle to detect
overfitting patches. This approach, however, only identifies
certain types of overfitting patches such as OPAD (as shown
in Xiong et al.’s evaluation [43]). Xiong et al. [21] pro-
posed PATCHSIM to heuristically identify patch correct-
ness based on the similarity of test case executions. It first
uses a test generation tool, i.e., RANDOOP, to generate new
test inputs. It then automatically classifies the generated
test cases into passing or failing based on the similarity
on execution traces. Finally, it uses an enhanced test suite
to determine whether a APR-generated patch is overfitting
based on its behaviors on passing and failing test cases.
Similar to DIFFTGEN, PATCHSIM requires the generation
of external test cases while Invalidator only uses the original
test suite and infers program invariants to generalize the
desired behaviors of the program under test.

7.3.2 Syntactic-based APAC

With respect to syntactic-based APAC, the closely related
works to our work are BERT+LR proposed by Tian et al.
[24]. BERT+LR assumes that correct codes are substantially
different from incorrect codes. Toward this, BERT+LR lever-
ages code representation techniques for differentiating the
correct and overfitting patches. Particularly, BERT+LR first
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embeds a patched code and a buggy code into numerical
vectors by using BERT [59] and using Logistic Regression to
estimate the similarity between a patched code and a buggy
code. Finally, a patch is considered incorrect/overfitting if
the similarity is lower than a certain threshold. However, it
is challenging to find a suitable threshold as the difference
between correct and incorrect codes may differ between pro-
grams. Different from BERT+LR, we proposed considering
the similarity of a patched program to its ground truth and
buggy program. Particularly, our syntactic-based classifier
relies on the intuition that a correctly patched code is more
similar to the developer-patched code (ground truth) than
a buggy code. This way, the similarity between a patched
and ground-truth code can serve as a “soft threshold” that
can be changed over different programs. As a result, our
approach is more flexible than BERT+LR, leading to better
performance, as seen in Section 5.3. Besides, our syntactic-
based classifier has new syntactic features, i.e., CodeBERT
[46], which has been demonstrated to be more effective than
BERT features.

Other works rely on static analysis (i.e., static code
features) to validate the generated patch, including ANTI-
PATTERNS and ODS. Tan et al. [25] propose anti-patterns
(i.e., specific static structures) to filter out overfitting
patches. Ye et al. [23] leverage 4199 code features extracted
from buggy code and generated patches as input to machine
learning algorithms (i.e., logistic regression, KNN, and ran-
dom forest) to rank potentially overfitting patches. How-
ever, this work requires manual hand-crafted features that
were carefully (manually) engineered, while our approach
automatically extracts features via a pretrained language
model.

Different from the aforementioned approaches from both
semantic and syntactic-based APAC, our approach lever-
ages both semantic information, i.e., program invariants,
and syntactic information, i.e., CodeBERT features, to reason
about patch correctness.

8 CONCLUSION AND FUTURE WORK

We proposed INVALIDATOR, a novel automated patch cor-
rectness assessment technique using semantic and syntactic
reasoning via program invariants and program syntax. IN-
VALIDATOR first infers program specifications in the form
of program invariants, guarding against correct and error
specification of a program under test. Based on the inferred
specifications, INVALIDATOR effectively identifies whether
a APR-generated patch is overfitting. In case the above
invariant-based specification inference fails to determine
an overfitting patch, INVALIDATOR further uses a machine
learning model to estimate the probability that the APR-
generated patch is overfitting. To do this, INVALIDATOR first
uses CODEBERT, a well-known pretrained model of code, to
represent language semantic of program syntax via a vector
of numbers, then measures syntactic differences between
APR-generated patches and its buggy and correct version.
Based on syntactic differences, INVALIDATOR uses a trained
model from labelled patches to estimate the likelihood of
a APR-generated patch being overfitting. We compared
INVALIDATOR against state-of-the-art automated patch cor-
rectness assessment techniques from a popular data set of

885 APR-generated patches for large real-world projects in
DEFECTS4J. Experiment results showed that INVALIDATOR

outperforms state-of-the-art baselines.
In future work, we plan to extend INVALIDATOR with

other groundtruth such as the original version of program
before applying a bug-inducing commit. Moreover, the
effectiveness of INVALIDATOR demonstrates that program
invariants can effectively capture the runtime behaviors of
the program. Therefore, another potential direction may be
finding a way to take advantage of the program invariants
in enhancing automated program repair directly. Finally,
we plan to integrate INVALIDATOR as a part of training
process to further improve learning-based program repair
as inspired from Ye et al. [70].

9 DATA AVAILABILITY

Invalidator are publicly available at https://github.com/
thanhlecongg/Invalidator. All of materials including im-
plementation, datasets and experimental results are also
published via https://doi.org/10.5281/zenodo.7475916
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