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Since its introduction in November 2022, ChatGPT has rapidly gained popularity due to its remarkable ability
in language understanding and human-like responses. ChatGPT, based on GPT-3.5 architecture, has shown
great promise for revolutionizing various research fields, including code generation. However, the reliability
and quality of code generated by ChatGPT remain unexplored, raising concerns about potential risks associated
with the widespread use of ChatGPT-driven code generation.

In this paper, we systematically study the quality of 4,066 ChatGPT-generated code implemented in two
popular programming languages, i.e., Java and Python, for 2,033 programming tasks. The goal of this work is
three folds. First, we analyze the correctness of ChatGPT on code generation tasks and uncover the factors
that influence its effectiveness, including task difficulty, programming language, time that tasks are introduced,
and program size. Second, we identify and characterize potential issues with the quality of ChatGPT-generated
code. Last, we provide insights into how these issues can be mitigated. Experiments highlight that out of
4,066 programs generated by ChatGPT, 2,757 programs are deemed correct, 1,081 programs provide wrong
outputs, and 177 programs contain compilation or runtime errors. Additionally, we further analyze other
characteristics of the generated code through static analysis tools, such as code style and maintainability,
and find that 1,933 ChatGPT-generated code snippets suffer from maintainability issues. Subsequently, we
investigate ChatGPT’s self-debugging ability and its interaction with static analysis tools to fix the errors
uncovered in the previous step. Experiments suggest that ChatGPT can partially address these challenges,
improving code quality by more than 20%, but there are still limitations and opportunities for improvement.
Overall, our study provides valuable insights into the current limitations of ChatGPT and offers a roadmap
for future research and development efforts to enhance the code generation capabilities of AI models like

ChatGPT.
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1 INTRODUCTION

Since launching in November 2022, ChatGPT [29], an Al-powered chatbot developed by OpenAl,
has rapidly gained popularity. Within just two months, ChatGPT had reached 100 million unique
users, surpassing even the fastest-growing social network, TikTok, in user acquisition [41]. Due
to its remarkable ability in language understanding and human-like answering, ChatGPT has
shown great promise in revolutionizing various research fields, including code generation due
to it being trained on extensive repositories of source code [29]. Interestingly, users without any
coding experience can use the model to generate code snippets from natural language requirements.
Although ChatGPT’s ability on code generation tasks has been informally receiving positive
feedback from the community, there exists no study that formally investigates the reliability and
quality of code generated by ChatGPT.

Despite the great promise of ChatGPT in code generation, formally and thoroughly studying the
reliability and quality of code generated by ChatGPT is becoming increasingly critical. This is due
to ChatGPT now being used not only by professional developers but also by novice programmers
and individuals with no coding experience. Code quality issues in ChatGPT-generated code, if not
properly identified and addressed, may unduly affect code comprehension, introduce bugs, or create
security vulnerabilities in users’ projects. Consequently, the widespread adoption of ChatGPT
for code generation could potentially lead to a decline in the overall quality of software systems.
Therefore, it is crucial to examine and address the common code quality issues that may arise from
using ChatGPT-generated code.

In this paper, motivated by the above challenges, we are the first to formally study the reliability
and quality of ChatGPT-generated code. Our objectives are (1) to analyze the correctness of
ChatGPT-generated code, (2) to identify and characterize code quality issues that may arise, and (3)
to examine different prompts that leverage feedback from static analysis tools and runtime errors
to guide ChatGPT in mitigating code quality issues. Through experiments addressing the following
three research questions, our work provides valuable insights that help increase awareness within
the community regarding code quality issues in ChatGPT-driven code generation.

e RQ1: (Performance) How effective is ChatGPT on code generation for programming tasks?
o RQ2: (Bugs and Issues) What are the common issues in ChatGPT-generated code?
o RQ3: (Repair with Prompting) Can ChatGPT fix the code quality issues with prompting?

To answer these questions, we first construct a benchmark dataset containing a total of 2,033
programming tasks from LeetCode, with 501 classified as easy, 1,064 as medium, and 468 as hard.
We then evaluate the ChatGPT-generated code for these programming tasks against LeetCode’s test
suite to evaluate ChatGPT’s performance on code generation. Next, we employ static analysis tools
including Pylint [42], Flake8 [10], PMD [9], and CheckStyle [4] to examine ChatGPT-generated
code. Based on feedback from static analysis tools and runtime errors, we conduct an open card
sort discussion [38] to characterize common code quality issues including compilation and runtime
errors, wrong outputs, code style and maintainability, and performance and efficiency. Finally, we
attempt to mitigate the identified code quality issues by using several fixing-prompts, i.e., prompts
that request ChatGPT to fix issues. To do so, we experiment with fixing-prompts with and without
feedback from static analysis tools and runtime errors.
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Our experimental results lead to the following findings: (1). On various code generation tasks on
Python and Java, 66% and 69% of Python and Java programs generated by ChatGPT are functionally-
correct programs, i.e., programs that pass all given test cases. We observed that the performance
is attributed to various factors such as task difficulty, the time when tasks are introduced, and
program size. Especially, ChatGPT’s performance drops up to five times on new programming tasks
introduced after January 2022, highlighting the model’s limitations in adapting to new programming
tasks. (2). We also identified that the generated code commonly suffers from different code quality
issues, such as compilation and runtime errors, wrong outputs, code style and maintainability
issues. For instance, among ChatGPT-generated code that passed the test cases, 53% of the Java
code and 37% of the Python code exhibited code style and maintainability issues. This highlights
the importance of addressing such problems to ensure the long-term success of Al-driven code
generation. In other words, developers and users still need to take appropriate measures to improve
the overall quality of the ChatGPT-generated code. (3). Our study on ChatGPT’s self-debugging
capabilities revealed that ChatGPT can partially fix code quality issues in the generated code with
feedback from static analysis tools and runtime errors. Moreover, the effectiveness of ChatGPT
in addressing code quality issues varies depending on the feedback information, programming
languages, and code quality issues.

To the best of our knowledge, our work is the first to:

e Conduct a comprehensive study to evaluate the reliability and quality of ChatGPT-generated
code;

e Identify and characterize common code quality issues in ChatGPT-generated code;

e Introduce a new dataset comprising 2033 programming tasks and 4066 ChatGPT-generated
code snippets implemented in two popular programming languages: Java and Python, with
2,556 code with quality issues;

e Conduct an exploration study on ChatGPT’s self-debugging capability for code quality issues.

To support the open science initiative, we publish the studies dataset and a replication package,
which is publicly available at https://doi.org/10.6084/m9.figshare.22773665

2 BACKGROUND
2.1 Large Language Model

Large Language Models (LLMs) have achieved impressive performance on a wide range of natural
language processing (NLP) tasks, including machine translation [8, 17, 34], summarization [12, 15,
34], sentiment analysis [48, 49], and question-answering [31, 34]. These models, typically based
on deep learning architectures such as transformers, are trained on massive amounts of text data,
allowing them to learn complex language patterns and structures. By capturing both the syntax and
semantics of human language, LLMs have been successful in generating coherent and contextually
relevant text.

One prominent example of an LLM is ChatGPT, developed by OpenAlI and based on the GPT-3
architecture. ChatGPT demonstrates an unprecedented ability to understand and generate human-
like text, making it well-suited for a variety of applications, including code generation. By training
ChatGPT on extensive source code repositories, the model has become capable of generating code
snippets and solving programming problems with remarkable accuracy.

2.2 Motivation

While LLMs have shown great promise in code generation, the reliability of the generated code is
questionable. The problem has become more critical with the emergence of ChatGPT, as LLMs-
driven code generation is now being used not only by experienced developers but also by novice
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programmers or even individuals with no coding experience, who may be unaware of the code
quality issues.

Code 1. A simplified version of an buggy code generated by ChatGPT for solving the LeetCode Problem
1093 - ’Statistics from a Large Sample’

1 #Description

]

3You are given a large sample of integers in the range [0, 255]. Since the sample
is so large, it is represented by an array count where count[k] is the number
of times that k appears in the sample.

4Calculate “mean~, i.e. the average of the sample, calculated as the total sum of
all elements divided by the total number of elements.

s Input: count = [0,1,3,4, 0, ..., 0]

6 Output: 2.37500

7Explanation: The sample represented by count is [1,2,2,2,3,3,3,3] so the mean is

8 1+2+2+2+3+3+3+3)/8 = 19/8 = 2.375.

n)"'

10 #Chat GPT Generated Code

11class Solution(object):

12 def sampleStats(self, count):

13 countSum = @
14 totalNum = sum(count)
15 mean = @

16 for i in range (256):
17 if count[i] > @:

18 countSum += count[i] * i
19 mean = countSum / totalNum
20 return mean

Code 1 illustrates a motivating example for our study. This is a simplified version of buggy code
generated by ChatGPT (lines 11 - 20) for solving the LeetCode Problem 1093 - ‘Statistics from a Large
Sample’ (lines 3-8). The problem requires ChatGPT to generate a code that calculates the mean of a
large sample of integers, represented by a count array where count[k] represents the frequency
of integer k in the sample. While looking straightforward and correct, the ChatGPT-generated code
produces the incorrect output from the example test given in lines 5-8. The expected output from
the test is 2.375, while the result from ChatGPT-generated code is 2. The root cause of the error is
line 19 in which mean is calculated using integer division (rounding down to integer) instead of
division as both countSum and totalNum are integers. Though the error is quite simple, it can be
difficult for developers or programmers who are not familiar with Python programming languages
to detect. It can also lead to more complex errors in other functions that call to this function without
the awareness of the error.

Code 2. A code smell generated by ChatGPT for solving the LeetCode Problem 1838 - ’Frequency of the
Most Frequent Element’

1def getMinDistance(self, nums: List[int], target: int, start: int) -> int:
2 min_diff = float('inf')

3 min_index = -1
4 for i in range(len(nums)):
5 if nums[i] == target:

6 diff = abs(i - start)
7 if diff < min_diff:
8 min_diff = diff
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min_index = i
return min_diff

Additionally, we also observed that the quality of the ChatGPT-generated code may still be poor
even if it is functionally correct. Code 2 illustrates an example of poor-quality code generated
by ChatGPT. This is a simplified version of code generated by ChatGPT for LeetCode Problem
1838, ‘Frequency of the Most Frequent Element’. The min_index variable is declared on line 3 and
assigned values on line 9, but it is never used elsewhere in the code. This is a minor code smell,
but it is worth noting that this issue occurs in a simple 10-line code for a common problem. Let’s
imagine complex tasks and code, could we ensure that ChatGPT-generated code does not contain
smells, bugs, or even vulnerabilities? This realization motivated us to conduct a comprehensive
study on the quality issues present in ChatGPT-generated code. Our study aims to not only enhance
our understanding of these issues but also to provide suggestions for mitigating them.

3 STUDY DESIGN

In this section, we present the details of our study design. We first present our research questions
and then introduce our dataset and the ChatGPT model.

3.1 Research Question

In this empirical study, we aim to answer the following research questions.

RQ1. How effective is ChatGPT on code generation for programming tasks? Despite informally
receiving positive feedback from the community, there is a lack of comprehensive study on the
performance of ChatGPT in code generation. This research question aims to measure how well
ChatGPT could generate code for programming tasks and to analyze the factors that impact its
performance, including task complexity, difficulty, and time that tasks are introduced.

RQ2. What are the common issues in ChatGPT-generated code? This research question aims to
analyze issues in ChatGPT-generated code using popular static analysis tools and categorize them
into common categories.

RQ3. Can ChatGPT fix the code quality issues with prompting? Conversational Al models such
as ChatGPT allow users to provide feedback to allow ChatGPT to revise its output. This research
question aims to investigate whether ChatGPT can correct coding issues based on runtime errors,
feedback from the compiler, and static analysis tools.

3.2 Constructing Benchmark Dataset

Existing benchmarks for evaluating Al-based code generation are often limited and outdated. For
example, prior work [5, 6] has relied on the HumanEval dataset [6], which only includes 164
Python programming tasks before 2021. Such small and outdated datasets, however, are not ideal
for evaluating modern Al models, such as ChatGPT, since they lack diversity and may have been
used in the training data of modern Al models. To address this issue, Fan et al. [11] introduce a
new dataset, LMDefects, that contains 113 Java programming tasks released after Jun 2021. The
dataset was collected from LeetCode, a well-known online platform that offers a variety of coding
challenges to help programmers enhance their abilities and prepare for technical interviews. The
dataset, however, is still relatively small and focused solely on Java programming tasks.

In this study, we extend LMDefects by collecting all accessible programming tasks and the
relevant official public test suites in LeetCode, and investigate ChatGPT’s ability in generating
code in both Java and Python. At the time of data collection (March 2023), there were 2,617 task
problems available on LeetCode. These problems cover various topics, including data structures,
algorithms, databases, and concurrency. For our dataset, we focused on the problems that were
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Table 1. Zero-shot pass rate accuracy on LeetCode

pass@1 Easy Medium Hard Overall

Python 0.890 0.674 0.400 0.664
Java 0.860 0.710 0.468 0.691

P-value 0.346 0.654 0.535 0.471
Effect Size 0.015 -0.012 -0.005 0.002

designed specifically for Java and Python, as these two languages are widely used and have a
large community of developers. Additionally, in order to provide a fair and accessible dataset, we
filtered out the premium tasks that require a subscription to access. After this filtering process,
we successfully collected 2,033 programming tasks from LeetCode. Out of the 2,033 tasks in our
dataset, we found that 501 were classified as easy, 1,064 as medium, and 468 as hard.

3.3 The ChatGPT Model

ChatGPT is a large language model that can provide detailed responses given natural language
instructions. We use the model that has been fine-tuned from the GPT3.5 models [32] using
Reinforcement Learning from Human Feedback [39]. In our study, we used the ChatGPT-March-23
version [30], which was trained on data up to 2021. To instruct ChatGPT, we followed the zero-shot
prompt setting which does not include examples of code generation in the prompt as follows: "Please
provide a code implementation of the following description + <description of a programming task>
+ Provide a valid <programming language> code with this template <solution template provided
containing the input and output specifications>".

4 RQ1: PERFORMANCE

In this section, we present the results for RQ1, which investigates the effectiveness of ChatGPT
in code generation. To mitigate the randomness of ChatGPT, we make ChatGPT deterministic by
setting the temperature to 0 and running the model once for each task, using the first generated
output for evaluation. ChatGPT’s performance is measured with zero-shot pass-rate (pass@1),
which measures whether the model produces a correct solution on the first attempt. For example, if
ChatGPT generates code snippets for 10 tasks and 7 of them pass the test cases in the first attempt,
the pass@1 accuracy would be 0.70. We also conducted the Mann-Whitney U rank test [26] to
measure the statistical significance of the performance differences by ChatGPT across factors. The
Mann-Whitney U rank test is a non-parametric statistical test used to compare two independent
samples to determine whether there is a significant difference between the two distributions, while
the Cliff’s Delta [25] effect size measures the magnitude of the difference between the samples.
Table 1 presents the pass rate of ChatGPT for LeetCode tasks with different difficulties in both
Python and Java. It can be seen that ChatGPT performs better on easy tasks than on medium and
hard tasks. For Python, the model achieves a pass@1 accuracy of 0.890 for easy tasks, indicating
that ChatGPT can handle 89% of easy tasks in one attempt. However, the performance drops to
0.674 for medium tasks and further decreases to 0.400 for hard tasks. Similarly, for Java, the model
attains a pass@1 accuracy of 0.860 for easy tasks, 0.710 for medium tasks, and 0.468 for hard tasks.
These findings suggest that the difficulty level of tasks has a significant impact on the performance
of ChatGPT in code generation. Table 1 also shows the results from the Mann-Whitney U test on
performance differences between Python and Java. Although ChatGPT performs slightly better in
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Table 2. Effect Sizes and P-values for Pass vs Fail Comparisons in Python and Java

Comparison (@pass vs @fail) Language P-value Effect Size (Cliff’s Delta)

Time period Python <0.001 0.511
P Java <0.001 0.446
Python <0.001 0.249
Program length
& & Java  <0.001 0.309
1 E~Jun2l
0.9 OJul 21 ~Dec21
0.8 OJan22 ~Jun22
0.7 OjJul 22 ~Dec22
i Bjan23~
w 0.6
205
«
204
03
0.2
0.1
0
Easy Medium Hard Easy Medium Hard

Python Java

Fig. 1. Pass Rate by Difficulty and Time Period

Java for medium (T 5.3%) and hard tasks (T 17%), their difference in performance is not significant
with a p-value of at least 0.53 and an effect size value less than 0.02 [25].

As ChatGPT (GPT-3.5-turbo) is trained solely on data until September 2021 [29], it’s also important
to measure its performance changes as new challenges arise. Figure 1 illustrates the pass rates of
ChatGPT across different difficulty levels (easy, medium, and hard) and programming languages
(Python and Java) over five distinct time periods. The chart shows that the performance of ChatGPT
declines over time for both Python and Java. Specifically, ChatGPT can solve more than half of
the hard-level code tasks before June 2021, but its performance reduces drastically to nearly 0.1
for the subsequent time periods. The decline in performance is not as pronounced for easy-level
tasks, which indicates that ChatGPT still maintains some level of proficiency when dealing with
simpler problems, even as time progresses. As shown in Table 2, the Mann-Whitney U test indicates
that the time period when tasks are introduced has a statistically significant difference between
passed code and failed code (p-value < 0.001) with a large Cliff’s delta effect size. However, this
observation also highlights the model’s limitations in adapting to the intricacies and nuances of
more complex, newer programming challenges. Moreover, the drop in performance of ChatGPT
could be explained by a data leakage issue in which the LeetCode problem may be contained in
ChatGPT’s training data. Therefore, the performance of ChatGPT on old programming tasks which
is published before December 2021 may only reflect the memorization capability [28] of ChatGPT
instead of its real performance. Therefore, the results also highlight the need to evaluate the model
on the newly-introduced dataset after September 2021 for fair evaluations.

In addition to difficulty levels and time periods, another factor that may impact the performance
of ChatGPT is the length of the generated code. Figure 2 presents the pass rates of ChatGPT for
both Python and Java programming languages, grouped by the number of lines in the generated
code. It is worth noting that the distribution of code lengths is not uniform, with the majority of
generated code snippets falling into the 10-20 lines range for Python and the 20-30 lines range
for Java. This discrepancy highlights the differences in verbosity and structure between the two
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Fig. 2. Pass Rate by Length of Generated Program

programming languages, which might also contribute to the variations in ChatGPT’s performance
across different length categories. In Figure 2 there is a clear trend of decreasing the pass rate
for both Python and Java, as the length of the generated code increases. For Python, the pass@1
rate starts at 0.872 for code snippets with less than 10 lines and gradually decreases to 0.265 for
code snippets with more than 50 lines. For Java, the pass@1 rate gradually decreases from 0.838
for code snippets with 10-20 lines to 0.478 for code snippets with more than 50 lines. This trend
suggests that ChatGPT’s ability to generate correct and bug-free code is inversely proportional
to the size of the generated code. This could be due to the increased complexity, and the greater
number of potential interactions between code elements as the code size grows, making it harder
for the model to generate a correct and complete solution. As shown in Table 2, the Mann-Whitney
U test confirms the significance of the differences (p-value < 0.01) with a small to medium effect
size. Overall, these findings suggest that improving the model’s ability to generate longer and more
complex code snippets is a valuable direction for future research and development.

In summary, our results indicate that the model’s performance declines over the difficulty level
and time period of code tasks. Furthermore, the model’s ability to generate correct and bug-free
code is inversely proportional to the size of the generated code, suggesting that the increased
complexity of longer code snippets poses a significant challenge for the model. Based on these
findings, it is recommended that future research and development efforts focus on improving the
model’s ability to handle more complex tasks, adapt to new programming challenges, and generate
longer and more intricate code snippets.

Finding 1: The performance of ChatGPT is significantly and substantially affected by task difficulty,
time that tasks are introduced, program size and programming languages.

5 RQ2: BUGS AND ISSUES
5.1 Static Analysis

To address RQ2, our first step is to gather output from LeetCode for ChatGPT-generated code. If
the generated code does not pass the tests, we label it as “Wrong Outputs” to indicate failure to
meet the problem requirements. However, passing test cases alone does not guarantee that the
code is free from quality issues. Therefore, to further investigate the code quality and identify
potential bugs, style issues, and other concerns that might impact the overall quality, we employ
static analysis tools tailored for each programming language.

For Java code samples, we use PMD [9] and Checkstyle [4]. PMD is a well-known static analysis
tool that inspects Java source code to identify potential problems and provides suggestions for
improvements [47]. Checkstyle, on the other hand, statically checks Java code against a specified
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Fig. 3. Code Quality Distribution by Difficulty and Language for Passed and Failed Tasks

set of coding conventions. Both tools evaluate the Java source code against a set of rules, reporting
warnings for any violations, their priority, and the corresponding lines in the file. Similarly, for
Python code samples, we utilize Pylint [42] and flake8 [10]. Pylint is a popular and comprehensive
static analysis tool that enforces coding standards and detects various types of issues in Python
code [36, 44]. Flake8 is another widely-used tool for Python, which combines PyFlakes, pycodestyle,
and McCabe to check for syntax errors, style issues, and code complexity, respectively. These tools
enable us to assess the code quality from multiple dimensions, beyond just functional correctness.

After running the static analysis tools, we gather issues found for each ChatGPT-generated
program identified by the compilers and the static analysis tools. In order to simplify the analysis
and reduce the impact of false positives, we focus on more significant aspects of code quality and
functionality. Therefore, we choose to ignore messages related to style issues such as whitespace,
newline, and invalid naming conventions, which is consistent with the approach taken in prior
work [36]. Figure 3 presents the distribution of code quality based on the difficulty levels and
programming languages for both passed and failed tasks. The figure highlights the proportion of
clean code, which refers to the code snippets without issues identified by the static analysis tools,
and the code with issues.

Figure 3 shows that the proportion of clean code is generally higher for passed tasks compared
to failed tasks. For Python, 63% of the passed tasks have clean code, while only 56% of the failed
tasks are clean. In the case of Java, 47% of the passed tasks have clean code, as opposed to 39% for
failed tasks. Additionally, it is evident that the percentage of clean code decreases as the difficulty
level increases for both Python and Java. For example, the percentage of clean Java code decreases
from 54% for easy tasks to 45% for medium tasks, and further drops to 33% for hard tasks. These
findings underscore the importance of addressing code quality concerns in tandem with functional
correctness to better support developers in handling complex programming tasks across different
languages and domains.

Finding 2: Code quality issues commonly happen in both code that pass or failed test cases, high-
lighting the need for characterizing and addressing these concerns alongside functional correctness.

5.2 Open Card Sorting Discussion

To gain a deeper understanding of the common issues and patterns found in the ChatGPT-generated
code, we conducted a qualitative analysis using open card sorting. The open card sorting process
has been used in many previous studies [3, 24, 45] to generate categories or taxonomy from data. In
this study, we follow the card sorting process highlighted by previous studies [24, 38], which mainly
consisted of two phases. First, the preparation phase where we created cards for each programming
task. This card is filled with the title of the programming task, generated code by ChatGPT, the
test results, and the static analysis tools result. The second phase is the execution phase where
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we choose the representative random sample of 154 programming tasks for both Java and Python
from a total of 2,033 programming tasks (with a 99% confidence level and 10% margin of error).
We analyzed and discussed each card, and iteratively sort them into groups based on their issues.
During the card sorting process, we found that many of the cards could be placed into several
different categories, as there can be more than one issue coming up in a given code. Once all the
cards were placed into categories, we created category names based on the issue patterns that we
observed.

After a thorough analysis and discussion of the card sorting process, the experts identify four
different categories of issues in the ChatGPT-generated code:

Compilation and Runtime Errors: Compilation and Runtime errors encompass issues that
prevent the correct execution of the code. These errors can arise due to various factors, such as
incorrect use of a programming language’s syntax, improper handling of data structures, invalid
input, or exceeding the bounds of an array. The errors often lead to failures during compilation
or runtime, and they need to be resolved before the program can function as intended. Code 3
demonstrates a compilation error that occurs when ChatGPT attempts to use the *(bitwise XOR)
operator with incompatible operand types, causing a compilation error.

Code 3. An example of compliation error (LeetCode Problem 2564 - Java)

1if (prefix[mid] * (left == @ ? @ : prefix[left - 11) > queries[ilJ[1]) {

2 r = mid - 1;

3} else {

4 1 = mid;

5}

6//Compiler: Solution.java:1: error: bad operand types for binary operator '*'

Wrong Outputs: Wrong Outputs represent issues in the code that cause it to produce incorrect

results or fail to meet the problem requirements. These errors can stem from incorrect algorithms,
improper handling of edge cases, or other inaccuracies in the desired logic. These errors can occur
even when the code is syntactically correct and free from any runtime errors. Code 4 presents an
example where ChatGPT provided an inaccurate solution to LeetCode Problem 746, “Min Cost
Climbing Stairs". The issue arises due to the incorrect construction of the loop and final return
statement. In this specific example, the input is [10, 15, 20]. The expected output is 15, achieved by
climbing the steps with costs of 10 and 20, while skipping the step with a cost of 15. However, the
ChatGPT-generated code produces an output of 25. This error occurs because the loop iterates one
step more than necessary, causing the last step’s cost to be included in the calculation even when it
should not be.

Code 4. A example of Wrong Outputs (LeetCode Problem 746 - Python)

1def minCostClimbingStairs(self, cost: List[int]) -> int:

2 n = len(cost)

3 dp = [0] * (n+1)

4 dp[@] = cost[0Q]

5 dp[1] = cost[1]

6 for i in range(2, n+1):

7 dpl[i] = min(dp[i-1]1, dp[i-2]) + cost[i-1]

8 return min(dp[n-1], dp[nl)

o#Compiler: AssertionError: Input: cost = [10, _15_ ,20] Expected output: 15

Code Style and Maintainability: This category encompasses issues related to the code’s
formatting, organization, and adherence to established style guides. Poorly styled or organized code
is difficult to read, understand, and maintain. Examples include inconsistent indentation, overly
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long lines, or lack of meaningful variable names. Code 5 presents an example where ChatGPT
provided an smelly solution to LeetCode Problem 1297, “Maximum Number of Occurrences of
a Substring". In this case, the static analysis tool PMD identified an issue on line 1: the variable
‘maxSize’ is declared but never used.

Code 5. A example of Code Style and Maintainability (LeetCode Problem 1297 - Python)
1def maxFreq(self, s: str, maxLetters: int, minSize: int, maxSize: int) -> int:
count = defaultdict(int)
3 res = 0

5 for i in range(len(s) - minSize + 1):
6 substring = s[i: i + minSize]
if len(set(substring)) <= maxLetters:
8 count[substring] += 1
9 res = max(res, count[substring])
10
11 return res
12 #PMD: 1297 -maximum-number -of-occurrences-of-a-substring.py:1:61: W0613: Unused
argument 'maxSize' (unused-argument)

Performance and Efficiency: Performance and efficiency issues arise when the code is not
optimized for execution speed or resource usage. These issues can lead to slow or resource-intensive
programs, which can negatively impact the user experience or system stability. Examples include
inefficient algorithms, unnecessary memory allocations, or redundant calculations. For example,
when using ChatGPT to solve LeetCode Problem 1982, titled "Find Array Given Subset Sums", the
compiler outputs a “TIMEOUT" error due to inefficient loop control within the generated code.

Finding 3: Issues in ChatGPT-generated code can be categorized into four categories: Compilation
& Runtime Errors, Wrong Outputs, Code Style & Maintainability, Performance & Efficiency.

5.3 Quantitative Analysis

In order to gain a comprehensive understanding of the issues present in the ChatGPT-generated
code, we perform a quantitative analysis on the categorized issues identified in the open card
sorting discussion. This analysis aims to provide insights into the frequency, distribution, and
nature of the issues across different difficulty levels and programming languages. From the card
sorting results, we derive rules to classify the issues in the generated code, allowing us to identify
areas where ChatGPT performs well and aspects that require improvement. It is important to note
that one generated code snippet may contain multiple issues, which can further affect the analysis.
By highlighting these issues, our analysis can guide future research and development efforts to
enhance the code generation capabilities of ChatGPT and similar Al models.

5.3.1 Overall Analysis. Table 3 presents the distribution of the four issues across task difficulty
levels and programming languages. From the table, it is evident that Compilation & Runtime
Errors and Performance & Efficiency issues are relatively less frequent, indicating that ChatGPT is
generally successful in generating syntactically correct and efficient code. However, Wrong Output
and Code Style & Maintainability issues are more prevalent and tend to be the most common
challenges faced by the generated code. Specifically, 1,081 out of 4,066 generated code snippets (i.e.,
26.6%) exhibit wrong output, while 1,933 out of 4,066 (i.e., 47.5%) encounter issues related to code
style and maintainability. Furthermore, as the difficulty level of the tasks increases, the prevalence
of these issues also tends to rise. For example, 7 out of 501 generated code snippets (i.e., 1.4%) for
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Table 3. Distribution of issues across difficulty levels and programming languages. P and J denotes Python
and Java, respectively.

Easy = Medium  Hard
N=501 N=106 N=468

P ] P ] P J Sum
Compilation and Runtime Error 7 8 37 32 46 47 177

Wrong Output 47 60 290 259 229 196 1081
Code Style and Maintainability 176 230 432 583 194 313 1933
Performance and Efficiency 1 2 20 16 6 6 51

Table 4. Comparison of Common Compilation and Runtime Error Categories in Java and Python Programs

Category Description Java Count Python Count
Division by Zero Attempt to divide by zero 3 3
Illegal Index Accessing an array or list with an invalid index 45 25
Concurrent Modification Modifying a collection during iteration 1 1
Empty Collection Access Accessing an element from an empty collection 2 3
Key Not Found Accessing a non-existent key in a dictionary or map 1 13
Null Reference Attempt to access an attribute or method of a null object 8 4
Type Mismatch Using an incorrect data type in an operation or function call 6 27
Resource Limit Exceeded Exceeding the system’s resource limits 2 1
Syntax error Incorrect syntax or structure in the code 4 0
Undefined Variable Accessing or using a variable that has not been defined 8 6
Attribute Not Found Attempt to access a non-existent attribute or method of an object 3 7
Duplicate Variable Defining a variable more than once in the same scope 4 0

easy Python tasks exhibit compilation and runtime errors, while the number of execution errors
increases to 46 out of 468 (i.e., 9.8%) for hard Python tasks. These findings indicate that ChatGPT,
while powerful, has room for improvement in automated code generation to deliver more reliable
and effective Al-generated code.

Finding 4: Wrong Outputs and Code Style & Maintainability issues are the most common challenges
faced by the ChatGPT-generated code while Compilation & Runtime Errors and Performance &
Efficiency issues are relatively less prevalent.

5.3.2  Analysis on Compilation & Runtime Errors. Table 4 presents a comparison of common compi-
lation and runtime errors error categories in Java and Python programs (i.e., 80 Python and 97 Java
programs with the errors). From this table, we can observe that ChatGPT generates code containing
a diverse range of errors across multiple categories, indicating the need for improvement in various
aspects of code generation. Additionally, a significant portion of common compilation and runtime
errors are relevant to the semantics of the generated program. For example, these errors may
contain illegal values (e.g., division by zero or invalid indices) and wrong access (e.g., concurrent
modification, null references, and empty collection access). These observations can be explained
by the probabilistic nature of the ChatGPT model, which predicts subsequent tokens based on
preceding ones. This nature enables ChatGPT to understand the semantics of common programs
that appear frequently in the training set. However, the model captures the semantics implicitly
from the training data, leading to misunderstandings of program semantics and subsequently
resulting in semantically-related compilation and runtime errors. These findings indicate that
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Table 5. Top 10 Issues Affecting Code Style and Maintainability in Python Programs Generated by ChatGPT

Errors Descriptions Pylint Flake8 #Programs
ConsiderUsingEnumerate Used when code that iterates with range and len is encountered. X 213
NoElseReturn Used in order to highlight an unnecessary block of code following an if containing a return statement. X 161
UnusedVariable Used when a variable is defined but might not be used. X X 103
RedefinedBuiltin Used when a variable or function override a built-in. X 63
ConsiderUsingDictItems Used when iterating over the keys of a dictionary and accessing the value by index lookup. X 39
AvoidAmbigousNames Used when code use variables named T, ’O’, or 'I’ X 38
TooManyBranches Used when a function or method has too many branches, making it hard to follow. X 36
TooManyLocals Used when a function or method has too many local variables. X 32
BlankLines Nested functions should contain 1 blank line between their definitions. X 28
InconsistentReturnStatements ~ Either all return statements in a function should return an expression, or none of them should. X 27

Table 6. Top 10 Issues Affecting Code Style and Maintainability in Java Programs Generated by ChatGPT

Errors Descriptions CheckSyle PMD #Programs
MultipleVariableDeclarations ~Each variable declaration must be in its own statement X 334
AvoidReassigningParameters Emitted when incoming parameters are reassigned values x 176
ForLoopCanBeForeach Used to recommend to use foreach loop instead of loop. x 114
RedundantModifier Emitted when a modifier is redundant X 112
RightCurly Emitted when right curly in a code violate common conventions X 87
VisibilityModifier Used to recommend that a variable should not public X 86
NPathComplexity Used when a method have too many acyclic execution paths X 81
LooseCoupling Used when using implementation types instead of interface X 64
HiddenField Emitted when a local variable or a parameter does not shadow a field that is defined in the same class. X 55
UseConcurrentHashMap Recommend to use the ConcurrentHashMap implementation X 54

incorporating semantic information into ChatGPT could potentially improve the quality of the
generated code, indicating a promising direction for future research.

Finding 5: ChatGPT-generated code contains various types of execution errors, primarily due to
misunderstandings of program semantics.

We also notice that Illegal Index errors are quite prevalent in both languages, particularly in
Java. In fact, out of the 97 compilation and runtime errors encountered in Java, 45 of them (46.4%)
are attributed to using an invalid index. Meanwhile, Type Mismatch errors are more prevalent in
Python than in Java, with 27 occurrences in Python compared to 6 in Java. This observation could be
due to Python’s dynamic typing system, which allows for more flexibility in variable types, but can
also lead to unexpected type-related issues at runtime. Overall, these findings suggest that different
languages may have distinct compilation and runtime error patterns and that improvements in
code generation should take these language-specific characteristics into account. Additionally, the
presence of various errors highlights the need for more effective debugging and error detection
tools tailored to each language, ultimately leading to more robust and efficient code generation.

[Finding 6: Different languages may have distinct compilation and runtime error patterns. ]

5.3.3 Analysis on Code Style & Maintainability. Tables 5 and 6 present the top 10 issues affecting
code style and maintainability in Python and Java programs generated by ChatGPT, respectively.
From these tables, we can see various types of code styles and maintainability issues in the ChatGPT-
generated code.

In Python, the top three issues are ConsiderUsingEnumerate (213 out of 2033 programs, 10.5%),
NoElseReturn (161 out of 2033 programs, 7.9%), and UnusedVariable (103 out of 2033 programs, 5.1%).
Interestingly, 5.1% of ChatGPT-generated code has unused variables, which is considered a bad
smell in code quality. Meanwhile, MultipleVariableDeclarations, AvoidingReassigningParameters,
ForLoopCanBeForEach, and RedundantModifier are the most frequent issues happening in Java code
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generated by ChatGPT, accounting for more than 36% ((334+176+114+112)/2033) of the generated
code. The presence of these issues indicates that the code quality of ChatGPT-generated code for
both Python and Java is not perfect and could be improved.

We further compare code style and maintainability issues in Java and Python. Our results show
that there are no overlapping top-10 issues in Python and Java. The possible reason is that Python
and Java have very different code styles and common practices. These results highlight the need
for language-specific techniques to address the issues. Finally, by analyzing the issues detected by
different static analysis tools, we can see that there is only one common issue in Python that can
be detected by both Pylint and Flake8. Similarly, there is no overlap between CheckStyle and PMD.
Thus, using multiple static analysis tools can provide a more comprehensive analysis of code style
and maintainability in ChatGPT-generated code.

Finding 7: ChatGPT-generated code contains various types of code style and maintainability issues.
Their common issues are specific to the language and tool being used.

6 RQ3: REPAIR WITH PROMPTING

Sections 4 and 5 have demonstrated that ChatGPT is capable of generating functional code for
various code generation tasks. However, the generated code sometimes suffers from different code
quality issues, such as execution errors, wrong outputs, and maintainability problems. Addressing
these issues is vital to ensure the reliability and efficiency of the generated solutions. Unlike
traditional code generation tools, ChatGPT has the potential to learn from user interactions and
refine its outputs based on the feedback it receives. This interactive process can lead to more
accurate and high-quality code generation. In this section, we investigate the self-debugging
capabilities of ChatGPT in addressing the code quality issues identified in the generated code. We
focus on providing effective feedback and exploring various strategies to enhance the performance
of the model. To investigate the impact of user feedback on the code quality of ChatGPT-generated
solutions, we employ two types of feedback: (1) Simple Feedback and (2) Feedback with Static
Analysis.

Simple Feedback: This type of feedback involves providing ChatGPT with basic information
about the issues in the generated code. For example, if a code quality issue is detected in the code,
we provide feedback to ChatGPT as follows: "The generated code has quality issues. Please provide a
better code implementation as expected by the task description."

Feedback with Static Analysis and Runtime Errors: In this method, we utilize the insights
from static analysis tools and runtime errors (as discussed in Section 5) to offer more precise and
detailed feedback to ChatGPT. Thus, we augment the simple feedback with additional information
derived from static analysis reports and runtime error messages. For example, if a static analysis
tool pinpoints a specific error or poor coding practice, we supply ChatGPT with feedback that
directly addresses the particular issue as follows: "The generated code contains the following quality
issues: + <details from static analysis tools> + Please provide a better code implementation as expected
by the task description."

We use both types of feedback to prompt ChatGPT to refine and improve its generated code.
Then, we compare the revised code with the original version to evaluate the effectiveness of the
feedback in addressing the identified code quality issues.

Figure 4 presents the fixed rates for different feedback types and code quality issues for both Java
and Python. The fixed rate is defined as the proportion of code quality issues that were successfully
addressed and resolved by ChatGPT if the issue no longer happens, measured as a percentage (i.e.,

Fix Rate = N‘%’;’;ﬁ\;ﬁfg;ezgizzle"sed) Overall, Figure 4 presents that ChatGPT can successfully repair
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Fig. 4. Comparison of Fix Rates for Different Feedback Types and Code Quality Issues

from about 20% to 60% code quality issues itself. Particularly, ChatGPT can resolve more than 60%
code style and maintainability issues in Python code with feedback from static analysis and runtime
errors while more than 60% performance and efficiency issues in Java code can be addressed with a

simple feedback.

Finding 8: ChatGPT shows great promise in self-mitigating code quality issues, achieving a fixed
rate of 20% to 60%.

In our comparison of two prompt designs, we observed that feedback with static analysis and
runtime errors is more effective in fixing code style and maintainability while simple feedback
performs better in the remaining quality issues in both Java and Python. This is because feedback
from static analysis tools provides detailed information about code quality issues, guiding ChatGPT
to self-mitigate these problems. For example, static analysis tools raise a warning that

Solution.java:12: ForLoopCanBeForeach: This for loop can be replaced by a
foreach loop

for the initial solution in lines 1 in Code 5. The warning provides detailed information about the
code style and maintainability issue in line 12 including location and even solution. Therefore,
ChatGPT can easily mitigate the issue. Meanwhile, feedback with runtime errors for remaining
issues, such as execution errors or performance and efficiency, tends to be less specific and more
ambiguous. For example, in most of the performance and efficiency, we only obtain a “TIMEOUT"
message, which does not reveal any details or root cause of a given issue. Similarly, for solution
inaccuracies, the runtime errors also usually only contain an AssertionError. For example, in
Code 4, ChatGPT has only received the following information from runtime errors:

AssertionError : Input : cost = [10 , _15_ ,20] Expected output : 15

Although the AssertionError points out the incorrect input-output examples, it remains abstract
and does not provide precise guidance. As a result of such limited feedback, it is not surprising that
ChatGPT shows lower performance in self-debugging issues. Interestingly, we found that simple
feedback is more effective than static analysis feedback or runtime errors in resolving these issues.
This is possibly due to the introduction of noise by static analysis and runtime error feedback,
which can confuse ChatGPT and lead to incorrect patches.
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Fig. 5. Number of Newly Introduced Quality Issues after Providing Feedback

Finding 9: Prompts with detailed feedback can effectively assist ChatGPT in self-mitigating code
quality issues, whereas ambiguous feedback may have a negative impact on ChatGPT’s performance.

While the aforementioned feedback are quite effective in guiding ChatGPT to self-mitigate its
code quality issues, we still observe that new code quality issues are introduced in the fixed version.
Figure 5 presents the number of newly introduced quality issues after providing feedback for both
Java and Python. The results demonstrate that, in some cases, addressing certain code quality issues
may inadvertently introduce new issues in the generated code. It can be seen that providing simple
feedback results in a higher number of new issues compared to static feedback and runtime errors.
This is because simple feedback is quite general so ChatGPT is sometimes misguided, resulting in
introducing new problems though plausibly solving the original issues. We observed that ChatGPT
sometimes even generates a new code, which is totally different from the original version.

Code 6. A example of newly-introduced issues in ChatGPT-generated fix using simple feedback for LeetCode
Problem 1323-maximum-69-number

1class Solution {

2 //Initial solution with issues

3 public int maximum69Number (int num) {

4 int[] arr = String.valueOf(num).chars().map(c -> c-'0"').toArray();

5 for(int i=0; i<arr.length; i++){

6 ifCarr[i]l == 6){

7 arr[i] = 9;

8 break;

9 }

10 }

11 int res = 0;

12 for(int i=0; i<arr.length; i++){

13 res = res*10 + arr[i];

14 }

15 return res;

16 }

17 //Fixed by simple feedback

18 public int maximum69Number (int num) {
19 int digits = (int) Math.logl@(num) + 1;
20 int firstSixDigit = digits - 1;

21 int temp = num;

, Vol. 1, No. 1, Article . Publication date: July 2023. 16



Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues 17

22 while (temp > 0) {

23 if (temp % 10 == 6) {

24 break;

25 }

26 temp = temp / 10;

27 firstSixDigit--;

28 }

29 return num + (int) Math.pow(l1@, firstSixDigit) =* 3;
30 }

31 //Fixed by static analysis feedback

32 public int maximum69Number (int num) {

33 int[] arr = Integer.toString(num).chars().map(c -> c - '0').toArray();
34 for (int i = @; i < arr.length; i++) {
35 if (arr[i] == 6) {

36 arr[i] = 9;

37 break;

39 }

40 int res = 0;

41 for (int digit : arr) {

42 res = res x 10 + digit;

43 }

44 return res;

46 }

For example, lines 18-30 in Code 6 show a fix generated by ChatGPT for the initial solution in lines
3-16. Unfortunately, instead of fixing the issue, ChatGPT generated a new solution (lines 18-30),
which implement an incorrect solution, resulting in failing test cases. Static feedback and runtime
errors, on the other hand, provide detailed information, i.e., leading to a correct fix in line 41 which
change the for-loop to foreach-loop. The results show that providing more accurate feedback about
code quality issues could lead to improvement in the quality of fixed programs by ChatGPT. These
findings emphasize the importance of advanced feedback mechanisms and strategies that improve
ChatGPT’s self-debugging capabilities by reducing the introduction of new issues while resolving
existing code quality problems.

Finding 10: Despite being effective in self-mitigating code quality issues, ChatGPT still introduces
new code quality issues in the generated fixes. More precise feedback could help mitigate the issues.

7 DISCUSSION
7.1 Lessons Learned

In this section, we highlight key lessons learned through our experiments and analysis that can
drive future research in the field.

Code quality issues are prevalent in Al-generated code: Our study revealed that ChatGPT-
generated code is prone to various code quality issues, including compilation and runtime errors,
wrong outputs, and maintainability problems. This finding emphasizes the importance of addressing
these issues to ensure the long-term success of Al-driven code generation and to maintain high-
quality software systems.

Task difficulty, time that tasks are introduced, and program size impact automated code
generation performance: We found that the performance of ChatGPT on code generation tasks
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is significantly influenced by factors such as task difficulty, task-established time, and program
size. This suggests that improvements in Al models should consider these factors to better adapt to
different types of code generation tasks.

Tailored feedback and prompt engineering are crucial for effective self-debugging
and code generation quality: Our results suggest that the effectiveness of ChatGPT’s self-
mitigating capabilities depends on the type of feedback provided, the programming language, and
the specific code quality issue. For instance, static analysis feedback works better for code style and
maintainability issues, while simple feedback is more effective for addressing execution errors and
wrong outputs. This finding highlights the importance of providing tailored feedback to maximize
the efficacy of ChatGPT’s self-mitigating capabilities. Moreover, the quality of ChatGPT-generated
code can be heavily affected by the choice of prompts. Future work could explore optimizing
prompts to improve the accuracy and reliability of ChatGPT-generated code, further enhancing the
overall effectiveness of Al-driven code generation models.

7.2 Threats to Validity

7.2.1  External validity. Threats to external validity concern the generalizability of our findings. Our
study is based on a dataset of 2,033 programming tasks from LeetCode, which may not represent
all possible code generation tasks encountered in real-world software development. Additionally,
we focus on Java and Python, two popular programming languages; however, our findings may
not be directly applicable to other programming languages. To mitigate these threats, future work
could expand the dataset by incorporating tasks from various sources and diverse programming
languages, and by considering different types of software projects, such as web applications, mobile
apps, and embedded systems.

7.2.2 Internal validity. Threats to internal validity refer to possible errors in our experiments.
One such threat relates to bugs happening in our code. To mitigate this risk, we have carefully
checked our code and made our code publicly available in figshare. [2] Another possible threat
may be introduced from our manual analysis and categorization. To eliminate the potential bias,
we conducted a sorting discussion among three annotators. We also release our analysis and
categorization results for public verification.

7.2.3  Construct validity. Threats to construct validity relate to the suitability of our evaluation.
In our study, we use the pass@1 metric, in which a program is considered as functionally correct
if it passes all the test cases. A possible threat arises from the incompleteness of the test suite,
which could potentially result in missed program bugs. In our experiments, we use the original
test suite from LeetCode, which is carefully designed and widely recognized. Thus, we believe
this risk is minimal. Another potential threat to construct validity comes from the variability in
ChatGPT-generated code due to different prompts. To address this concern, we followed the similar
methodology used by Fan et al. [11] and Tian et al. [43], which ensures that our results are reliable
by using a consistent set of prompts across different tasks. However, it is important to note that
prompt engineering can significantly influence the quality of the generated code. Future work could
focus on optimizing the prompts to improve the accuracy and reliability of ChatGPT-generated
code, thus enhancing the overall effectiveness of Al-driven code generation models.

8 RELATED WORK

In this section, we present related work and discuss the novelty of our work with respect to large
language models for code generation and code quality issues.
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8.1 Large Language Model for Code Generation

Large Language Models have been emerging as the state-of-the-art in code-related tasks, advancing
the progress on program understanding [12, 46], analysis [19, 22, 40], and generation [6, 18, 23].
Among these tasks, LLM-based code generation approaches are closely related to our study. The
era of LLMs in code generation began with the introduction of CodeX [6], which serves as the
backend for a well-known commercial tool, i.e., GitHub Copilot [14]. After the success of CodeX,
various models such as InCoder [13], Google Alphacode [23], and Amazon CodeWhisperer [1]
have been emerging, resulting in remarkable improvements in the effectiveness of code generation.
These advancements provide a new way of tackling the code generation problem. Recently, OpenAl
introduced ChatGPT [29] a general Al-powered chatbot with remarkable capabilities in language
understanding and human-like answering. ChatGPT has shown remarkable accuracy in generating
code and solving programming problems while receiving positive feedback from users and gaining
popularity. However, the quality of the ChatGPT-generated code is the critical concern for top
software companies when deciding whether to adopt it in practice or not [7, 16, 33].

To the best of our knowledge, this paper is the first to systematically analyze and characterize
the code quality issues in ChatGPT-generated code. By doing so, we hope to increase awareness
about the quality issues in code generated by ChatGPT, and provide suggestions for mitigating the
issues.

8.2 Code Quality Issues

Code quality issues are the most important concern, as one quality issue (aka. software defect)
could lead to monetary and reputation costs. There is a large number of studies investigating code
quality issues from human-written code. For example, Kochhar et al. [21] conducted a large-scale
empirical investigation on the code quality of open-source projects implemented in 17 programming
languages. Saboury et al. [35] empirically investigate code smells in 537 releases of five popular
Javascript applications. Keuning et al. [20] investigate code quality issues in student programs.
However, none of these studies focuses on the code quality issues for the Al-generated code,
highlighting the difference between our paper and the literature on code quality issues.

8.3 Code Quality Issues of Al-generated Code

As Al-generated code becomes more prominent, researchers investigate the quality of code gener-
ated by CodeX and GitHub Copilot. For example, Nguyen et al. [27] evaluated the performance of
Copilot on 33 programming tasks. Fan et al. [11] further analyze common bugs in code generated
by Codex, the backend of Copilot, on 113 programming tasks and benchmark automated program
repair tools on fixing the mistakes. However, these studies focus on CodeX and GitHub Copilot on
a few programming tasks, leading to a lack of diversity. Different from these studies, we conduct a
large-scale analysis on 2033 programming tasks, which enables us not only to comprehensively
evaluate the effectiveness of Al-generated code but also to identify factors affecting their per-
formance. Moreover, Nguyen et al. [27] focus on analyzing the correctness of Al-generated code
while Fan et al. [11] target to benchmark automated program repair tools on fixing mistakes. Our
work, on the other hand, delves deeper into analyzing code quality issues, including code style
& maintainability issues, and highlights common patterns across different types of code quality
problems. Besides that, our study focuses on ChatGPT, a recently-introduced AI chatbot developed
by OpenAl. Unlike Codex and GitHub Copilot, which target experienced professional developers
and programmers, ChatGPT caters to a much wider audience, with approximately 1.6 billion visits
in April 2023 [37], including novice programmers and non-coders. Therefore, a comprehensive
study on the reliability of source code generated by ChatGPT would not only provide valuable
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insights into the model but also raise awareness about the responsible usage of ChatGPT in code
generation.

9 CONCLUSION

In this study, we conducted a systematic analysis of ChatGPT-generated code to assess its reliability
and identify potential code quality issues. Our findings demonstrate that while ChatGPT can
generate functional code for various programming tasks, the generated code often suffers from
quality issues, such as compilation and errors, wrong outputs, maintainability problems, and
performance inefficiencies. We also explored ChatGPT’s self-debugging capabilities and investigated
the impact of different feedback strategies in addressing these code quality issues.

Our research provides valuable insights into the current limitations of ChatGPT and highlights the
importance of considering context-aware feedback and code quality issues when utilizing Al-driven
code generation tools. Moreover, our work offers insights for future research and development efforts
aimed at enhancing the code generation capabilities of Al models like ChatGPT. We believe that by
addressing these challenges, we can pave the way for more reliable, efficient, and maintainable
Al-generated code, ultimately benefiting both experienced developers and novice programmers
alike. In the future, we plan to develop more advanced prompts in both code generation and fixing
to further improve the reliability of ChatGPT-generated code.
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