
Usability and Aesthetics: Better Together for
Automated Repair of Web Pages

Thanh Le-Cong
School of Information and

Communication Technology
Hanoi University of Science and Technology

Hanoi, Vietnam
thanh.ld164834@sis.hust.edu.vn

Xuan Bach D. Le
School of Computing and

Information Systems
University of Melbourne

Melbourne, Australia
bach.le@unimelb.edu.au

Quyet Thang Huynh † and Phi Le Nguyen
School of Information and

Communication Technology
Hanoi University of Science and Technology

Hanoi, Vietnam
{thanghq, lenp }@soict.hust.edu.vn

Abstract—With the recent explosive growth of mobile devices
such as smartphones or tablets, guaranteeing consistent web
appearance across all environments has become a significant
problem. This happens simply because it is hard to keep track
of the web appearance on different sizes and types of devices
that render the web pages. Therefore, fixing the inconsistent
appearance of web pages can be difficult, and the cost incurred
can be huge, e.g., poor user experience and financial loss due to it.
Recently, automated web repair techniques have been proposed to
automatically resolve inconsistent web page appearance, focusing
on improving usability. However, generated patches tend to
disrupt the webpage’s layout, rendering the repaired webpage
aesthetically unpleasing, e.g., distorted images or misalignment
of components.

In this paper, we propose an automated repair approach for
web pages based on meta-heuristic algorithms that can assure
both usability and aesthetics. The key novelty that empowers our
approach is a novel fitness function that allows us to optimistically
evolve buggy web pages to find the best solution that optimizes
both usability and aesthetics at the same time. Empirical eval-
uations show that our approach is able to successfully resolve
mobile-friendly problems in 94% of the evaluation subjects,
significantly outperforming state-of-the-art baseline techniques
in terms of both usability and aesthetics.

Index Terms—Automated Program Repair, Search-based Soft-
ware Engineering, Mobile Friendly Problem, Cross Browser
Issues

I. INTRODUCTION

In our modern world, the World Wide Web (WWW) has
become one of the most popular sources of information [2],
[5]. This information is often accessible through web pages
via numerous types of devices such as smartphones and
tablets and via various web browsers such as Chrome, Safari,
Firefox, Internet Explorer, and many more. The variety of
devices and browsers, on the one hand, allows various ways
to access information, but on the other hand, poses several
profound challenges, among which guaranteeing consistent
web appearance across all environments is one of the most
important problems.

In practice, developers often have to ensure that web pages’
appearance is amenable to various environments. Specifically,
there are two popular types of web appearance issues that

†
Corresponding author

developers usually concern with, including usability and aes-
thetics of web pages across sizes and types of different devices.
Usability issues include bugs related to font size, which affect
readability, the margin of touchable elements, the presence of
navigation or content that overflows the device’s viewport, etc.
Aesthetic issues concern relative proportions and positioning
of elements on the page. To ensure the absence of these issues,
developers often have to test web pages and fix any discovered
errors manually. This common practice, however, is very time-
consuming and very expensive due to the enormous amount
of environments that need to be considered. For example,
these environments may refer to multiple browsers such as
Chrome, Firefox, or multiple devices such as smartphones,
tablets. Automated techniques that can help developers cope
with automatic testing and repairing bugs on web pages are
thus of tremendous value.

Recent years have seen a pragmatic progress on automated
web repair techniques proposed to resolve usability and aes-
thetic issues on web pages [14], [15]. These approaches
generally follow three stages: bugs discovery, localization, and
repair. The first stage, i.e., bugs discovery, can be performed
via readily available tools such as Google Mobile-Friendly
Test Tool (GMFT) [3], Google PageSpeed Insights Tool (PSIT)
[4] or Bing [1]. The latter two stages, i.e., localization and
repair, are often more challenging with less tool support.
Techniques like MFix [14] achieve this often via a genetic
programming approach that gradually generates repair can-
didates that improve usability over time. Although proposed
repair algorithms can help to improve web pages’ appearance,
since they mainly focus on usability while letting aesthetics
be best-effort, they may not provide a patching solution that
can guarantee good usability and aesthetics simultaneously.

Machine-patched pages may suffer from a poor aesthetic
and result in an undesirable layout. For example, Figure 1
depicts a repaired page by state-of-the-art MFix [14] across
four different runs. From the figure, we can clearly see the
instability and imbalance of MFix. The first two patches have
layout distortion as some symbols and text are overlapped.
Compared to the original page, the third patch does not change,
meaning it does not manipulate the original page to reflect
developers’ intent. The fourth patch is even more severely

ar
X

iv
:2

20
1.

00
11

7v
1

 [
cs

.S
E

]
 1

 J
an

 2
02

2

problematic as it has cluttered navigation.
In this work, we focus on automated repair of web pages,

considering both usability and aesthetics. To assess usability,
we use PSIT [4], which rates how friendly a web page is
based on a scale from 0 to 100; the higher the score, the
more usable the web page is. To assess aesthetics, we follow
a common metric proposed in [14], which calculates the
alignment between components in a web page. Based on these
metrics, we propose a new fitness function that optimizes
both the usability and aesthetics scores simultaneously. We
propose two repair algorithms to search for a solution that not
only addresses mobile friendliness problems but also ensures
a pleasing layout. In the first algorithm, we focus on the
accuracy of a solution with a high level of usability and
aesthetics at a reasonable time cost. In the second algorithm,
we compensate the accuracy for the running time. Specifically,
we try to reduce the running time as much as possible while
maintaining an acceptable level of usability and aesthetics. The
first algorithm follows Particle Swarm Optimization (PSO) [9],
and the second is based on Tabu Search [8]. We compare our
approach against MFix [14] – the state-of-the-art of mobile-
friendly web repair. Similar to MFix, our algorithms generate
and improve repair candidates over several generations. Dif-
ferent from MFix, at the core of our algorithms, we design a
fitness function that optimizes for both usability and aesthetics.

We evaluated our approaches and MFix on 38 web pages,
which is provided by Mahajan et al. [14] on two tasks:
mobile-friendliness (usability) and aesthetic layout (aesthet-
ics). Experiment results show that our approaches significantly
outperform MFix. Notably, our PSO-based repair algorithm
outperforms MFix on 29 of 38 web pages in the aesthetic
layout task and on 26 of 38 web pages in the mobile-
friendliness task. Also, our Tabu search-based algorithm shows
superior efficiency despite being less effective than the PSO-
based algorithm that we proposed. Finally, we also evaluate
different parameter settings for PSO and Tabu Search to
show their impact. Experiments with the Wilcoxon signed-
rank test [25] show that the superiority of our approaches over
MFix is significant.

In summary, our contributions include:
• We propose a new fitness function that optimizes both

the usability and aesthetics scores to guarantee generated
solutions that not only address mobile friendliness prob-
lems but also ensure a pleasing layout.

• We proposed two algorithms, namely PBRA and TERA,
to search for solutions based on the proposed fitness
function. The first algorithm focuses on the accuracy of
solutions, while the second algorithm reduces the running
time.

• We demonstrate that our approach significantly outper-
forms the current state-of-the-art MFix on aesthetic layout
and mobile-friendliness tasks.

The remainder of the paper is organized as follows. Section
III introduces the overview of an automated web repair pro-
cess. We present the mathematical formulation of the problem
in Section IV and describe our proposed algorithms in Section

V. Section VI presents the experimental results, and Section
VIII concludes the paper.

II. RELATED WORK

Recently, there has been a growing interest in automated
fixing of presentation issues in web pages. Mahajan et al.
propose XFix [15] technique that repairs presentation failures
arising from the inconsistencies in the rendering of a website
across different browsers, i.e., layout Cross Browser Issues
(XBIs). XFix assumes that one of the browsers presents the
correct presentation of the page, which must be rendered the
same in other browsers. In this work, we focus on the usability,
and aesthetic of web pages, which is different from the XBIs
addressed by XFix. That is, there is no correct reference
available to the repair process in our approach. Mahajan et
al. propose MFix [14] technique which is a novel automated
approach for repairing mobile-friendly problems in web pages.
They also provided effective metrics to assess the aesthetic
usability of web pages. However, MFix mainly focuses on
usability while letting the aesthetic best effort. Mahajan et al.
recently proposed IFix ++ [16], a search-based technique to
automatically repair Internationalization Presentation Failures
in web application. However, this work only fixes layout
disruption, while our work focuses on both usability and layout
disruption at the same time.

Cassius et al. [20], proposes to use automated reasoning for
debugging and repairing buggy CSS. The technique takes as
input faulty source lines in CSS files and user-provided exam-
ples that can be used to guide the repair synthesis. These inputs
are, however, not readily available in the problem domain that
our work addresses. PhpRepair [22] and PhpSync [19] detect
and repair HTML syntax issues. Wang et al. [24] propose to
use static and dynamic analysis together for repairing web
applications. This is achieved by propagating a generated
presentation fix to the server-side source code.

Less relevant to our work in this paper is a recent research
effort in automated repair of source code in Java or C program-
ming languages. Le Goues et al. spark the exciting pioneering
work on automated fixing of bugs in C programs [13]. The
research in automated bug fixing has since then seen a plethora
of proposed techniques for fixing bugs in both C and Java
programs, using an array of techniques including search-based
software engineering and formal methods, etc [11], [12], [17],
[18]. These approaches assume the existence of a test suite
to guard against the correctness of the programs under repair.
Similar to the search-based program repair, e.g., [12], [13],
our work uses evolutionary search to find the best candidates.
However, different from them, we do not rely on a test suite for
patch validation, but instead, we use readily available tools that
can automatically assess usability and aesthetics to evaluate
repair candidates.

Overall, despite the recent interest in repairing web pages,
there are still more works needed to push the boundary of
this research area further. Our work attempts to enhance the
existing state-of-the-art work on web page repair. The focus of
our work is on repairing web pages while preserving usability

(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4

Fig. 1: Repaired page across several runs by MFix

and aesthetics altogether. By doing this, our work is quite
unique on its own to tackle the aforementioned problem. In
the next section, we describe the details of our proposed
framework.

III. OUR FRAMEWORK

Our repair framework consists of three phases: segmen-
tation, localization, and repair. The main novelty of our
framework lies in the third phase, i.e., repair, while the first two
phases are inspired by [14]. Below, we describe each phase in
more detail.

The segmentation phase groups web pages into regions.
Each region is a set of HTML elements that should be repaired
together to guarantee the visual consistency of the repaired
page. This can be achieved by readily available tools, such
as VIPS [6], Block-o-Matic [23], correlation clustering [7],
and cluster-based partition [21]. In this work, we leverage an
automated clustering-based partitioning algorithm proposed by
Romero et al. [21] as our segmentation tool. This approach
is based on the Document Object Model (DOM) tree of the
page, in which each leaf element of the DOM tree is assigned
to its segment. Then, the segments are merged if they are close
enough, i.e., their distance measured by the average depth of
leaves in the DOM tree is below a predefined threshold.

The localization phase consists of two steps. The first step
is for classifying issues associated with problematic segments
that should be repaired. There are five main types of issues, in-
cluding font-sizing, tap target spacing, content sizing, viewport
configuration, and flash usage as reported by popular mobile
testing tools [4], [1]. In this paper, we only focus on addressing
the first three of these problems following MFix [14]. The
result of this step is a set of tuples with the form of 〈s, T 〉,
where s is a potentially problematic segment and T is the
set of issues associated with s. Note that, T is a subset of
{font-sizing, tap target spacing, content sizing}. To achieve
this, Google Mobile-Friendly Test Tool (GMFT) can be used.

Next, the second step determines CSS properties that may
need to be adjusted for patching the issues of the problematic
segments. For example, a font-sizing issue may be patched by
adjusting font-size, line-height, width, height properties. As
all the elements in the same segment should have a reciprocal
relationship, their CSS properties should be adjusted together.
To address this problem, MFix [14] proposed a structure
named Property Dependence Graph (PDG), which represents
the relationship between elements in a segment with respect
to a given issue type. Specifically, each node of a PDG
graph corresponds to an HTML element in the segment. Two
nodes in the PDG are connected if there exists a dependency
relationship between them. There is a function M that maps
each edge of the PDG to the ratio of between the values of
the CSS properties associating with the two end nodes of the
edge. Intuitively, if we know the value corresponding to the
root node of a PDG, we can deduce the value corresponding
to the other nodes by using function M . This results in a set
of segments and their corresponding PDGs.

The last phase, i.e., repair, is to determine the optimal values
of CSS properties for repairing all the found issues. In this
paper, we focus on this phase and propose two algorithms
which will be described in the following sections.

IV. FORMULATION AND FITNESS FUNCTION

The core of our algorithms is how we define a fitness
function to search for the best solution during the evolution of
repair candidates. A well-designed fitness function can lead
to better repair candidates, and thus, we carefully crafted
the fitness function as explained below. We first give the
detailed formula for the fitness function that we designed and
then explain the high-level idea following the design of the
function.

Given the potentially problematic segments, their issues,
and the corresponding PDG identified by the segmentation
and localization algorithms described in the previous section,

our objective is to determine the optimal patching solution to
address all the issues. Let S denote the set of all segments, S =
{S1, ..., Sn}. For each Si (i = 1, n), let Ii be the set of issues
associated with Si. Let Iji be an issue belonging to Ii, then
j ∈ {1, 2, 3}, where I1i , I

2
i , I

3
i correspond to issues related to

font-size, tap target spacing and content sizing, respectively.
Let PDG

〈
Si, I

j
i

〉
denote the PDG corresponding to Si and

Iji . As mentioned in Section III, to fix issue Iji , we just need
to determine the value of CSS properties associated with the
root node of PDG

〈
Si, I

j
i

〉
(then, the other elements can be

adjusted by using PDG). Our problem can be mathematically
formulated as follows.
Input

Si, I
j
i ,PDG

〈
Si, I

j
i

〉
(i = 1, n; j ∈ {1, 2, 3})

Output
X =

{
Xj

i

}
(i = 1, n; j ∈ 1, 2, 3),

where Xj
i denotes the value of CSS properties associated

with the root node of
〈
Si, I

j
i

〉
.

Objectives

Maximize Usability score U(X)
Minimize Aesthetic score A(X)

where U(X) indicates the mobile friendliness of the page
which can be measured by using PSIT; the aesthetic score
quantifies the layout differences between the original page
and a transformed page to which a candidate patch has been
applied. The aesthetic score is measured based on Segment
Model (SM) and Intra-Segment Model (ISM), where:

• A Segment Model (SM) is defined as a directed com-
plete graph where the nodes are the segments in the
segmentation phase and the edges are labeled by one of
four relationships: (1) intersection, (2) containment, (3)
directional (i.e., above, below, left, and right).

• A Intra-segment Model (ISM) is similar to SM but is built
for each segment, and the nodes are the HTML elements
within the segment.

Using these models, the aesthetic score is computed by
summing the size of the symmetric difference between each
edge’s labels in the SM and ISM of the original page and
transformed page [14].

This is a multi-objective optimization problem, and thus we
define the total fitness function as follows.

F (X) = α× E(U(X)− 80) + βA(X)

, where α and β are negative and positive weight factors that
could be tuned to obtain the best performance; and E(Y) is
a function defined as:

E(Y) =

{
G(Y) if Y < 0
Y − 1 otherwise

We explain the high-level idea of the above fitness function
as follows. First, it is worth noting that the maximum mobile-
friendliness score given by Google Insight Tool is 100 and
that the usability score should be at least 80 to guarantee
the page’s friendliness as indicated in [14]. Motivated by this
observation, we design the first item in the fitness function
(i.e., the one representing the usability score) such that its
value is significantly large when the usability score is smaller
than the threshold, which is 80. Therefore, G(Y) should be
a reciprocal function that increases rapidly compared to a
linear function. The selection of G(Y) is discussed in detail
in Section VI

Note that as α is negative real number and β is positive real
number, maximizing U(X) and minimizing A(X) correspond
to minimizing F (X). Accordingly, the objective now is to
minimize the fitness function F (X).

V. PROPOSED ALGORITHMS

The core of our method is a Particle Swarm Optimization
that repairs web pages by determining the optimal values of
the fitness function as proposed in Section IV. PSO iteratively
tries to improve candidate solutions, here dubbed particles, by
moving these particles around in the search space according
to simple mathematical formulae over the particles’ position
and velocity. Using PSO instead of random searches helps
to leverage knowledge about the changing trends of particles,
improving and directing particles in the next iterations. PSO
often provides high-quality solutions, but it may have a low-
convergence rate which can be time-consuming. To further
tackle this issue, we also propose a second approach, which
optimizes for running time. This second approach is based on
the Tabu search algorithm, which shows a higher convergence
rate than PSO, as will be discussed in Section VI.

In the following, we describe the proposed algorithms in
detail.

A. PBRA: A PSO Based Repair Algorithm

In this section, we leverage Particle Swarm Optimization
approach to determine the optimal values for CSS properties
that need to be adjusted. Basically, PSO approach simulates
the behaviours of bird flocking. In PSO, every single solution
can be seen as a bird, and we call it as a particle. The
goodness of every particle is measured by a fitness value
based on a fitness function. All of the particles have velocities
that direct the flying of the particles by following the current
optimum particles. PSO starts with a set of random particles
and searches for the optima by updating generations. In each
iteration, each particle is updated by following the best values
found so far. Algorithm 1, presents the details of our proposed
algorithm, which we will describe more in detail below.

Let us assume that we have a set of m particles denoted
as P = {P1,, PT }. The algorithm then follows the steps
below.

• Step 1: The first step in the process of a Particle Swarm
Optimization is the generation of an initial population.

Algorithm 1 PBRA

Input: The set of segments and their corresponding issues
and PDGs, Si, I

j
i ,PDG 〈Si, I

j
i 〉(i = 1, n; j ∈ 1, 2, 3)

Output: Repair values for the root nodes of PDGs
1: x← a candidate is suggested by GMFT [3]
2: Initializing the first generation consisting of m particles
P0 =

{
P 0
1 , P

0
2 , . . . , P

0
T

}
by using Gaussian distribution

3: gBest← F (P 0
1)

4: for P 0
t ∈ P0 do

5: v0(Pt)← random number in (0, 1)
6: pBestt ← P 0

t

7: if F (pBestt) ≤ F (gBest) then
8: gBest← pBestu
9: end if

10: end for
11: k ← 0
12: while The termination condition has not been met do
13: for P k

t ∈ P k do
14: vk+1(Pt)← Update(vk(Pt), pBestt, gBest, P

k
t)

15: P k+1
t = P k

t + vk+1(Pt)
16: if F (P k+1

t) < F (pBestt) then
17: pBestt ← P k+1

t

18: end if
19: if F (pBestt) ≤ F (gBest) then
20: gBest← pBestt
21: end if
22: end fork ← k + 1
23: end while
24: return gBest

Each particle of the initial population represents a possi-
ble solution to the problem. The initialization process is
often designed to ensure the diversity of the population,
which plays an important role in population-based algo-
rithms. In mobile-friendly problems, we create the first
particle by using the suggested value of GMFT [3]. Then,
we generate the initial population by perturbing adjust-
ment factors based on a Gaussian distribution around the
original values of the first particle.

• Step 2: Let gBest denote the best value obtained so far
by all particles in the population, and let pBestt denote
the best value that the t-th particle (i.e., Pt) achieved
so far. If the current value of the t-th particle is better
than pBestt, then pBestt is replaced by the current value
of the t-th particle. The algorithm then searches for all
particles to find the best candidate with the highest score
and assigns it to gBest.

• Step 3: The algorithm leverage information obtained
from previous generations to improve the quality of
particles by adjusting particles direction based on gBest
and pBestt, which is determined in step 2. In detail,
the velocity and updating the value for every particle are
defined as follow. The velocity of particle Pt at iteration

k + 1 (denoted as vk+1(Pt)) is determined as

vk+1(Pt) = w × vk(Pt) + c1 × r1 ×
(
pBestt − P k

t

)
+ c2 × r2 ×

(
gBest− P k

t

)
where vk(Pt) is the velocity of particle Pi at the previous
iteration. Based on the velocity, particle Pt updates its
value as follows.

P k+1
t = P k

t + vk+1(Pt)

• Step 4: Step 2 is repeated until the termination condition
is satisfied. The final value of gBest is then deemed
as optimal solution. In this work, we used the number
of evaluations, i.e., the number of calls to the fitness
functions, as our termination condition.

B. TERA: a Time Efficient Repair Algorithm

In this section, we present the detail of a repair algorithm
based on Tabu search. The insight of our algorithm is that we
start with a repair candidate that is suggested by GMFT [3].
Then, we attempt to iteratively improve repair candidates over
generations, following a genetic programming approach [10].
Algorithm 2 shows more details of our proposed algorithm.
We explain Algorithm 2 step by step below.

Algorithm 2 TERA

Input: The set of segments and their corresponding issues
and PDGs, Si, I

j
i ,PDG< Si, I

j
i >(i = 1, n; j ∈ 1, 2, 3)

Output: Repair values for the root nodes of PDGs
x← a candidate is suggested by GMFT [3]
sBest ← x
bestCandidate ← x
tabuList ← []
tabuList.push(x)
while !termination condition do
sNeighborhood ← getNeighbors(bestCandidate)
for sCandidate ∈ sNeighborhood do

if F(sCandidate) ≤ F(bestCandidate) and
sCandidate /∈ Tabulist then
bestCandidate ← sCandidate

end if
end for
if F(bestCandidate) ≤ F(sBest) then
sBest ← bestCandidate

end if
tabuList.push(bestCandidate)
if tabuList.size() > sizetabu then
tabuList.removeFirst()

end if
end while
return sBest

• Step 1: First, the algorithm creates a repair candidate is
suggested by GMFT [3], assigning this candidate as the
best candidate denoted by sBest. It then inserts sBest into
TabuList which is a list consisting of all the candidates
that has been visited.

• Step 2: Let bestCandidate be the best repair candidate
found in the previous iteration, and suppose that bestCan-
didate is represented by

bestCandidate = {x11, x21, x31,, x1n, x2n, x3n},

where xji is the value for repairing issue Ij of segment
xi. The algorithm then determines neighbors of best-
Candidate whose values fall into the following range:
{x11±δ, x21±δ, x31±δ,, x1n±δ, x2n±δ, x3n±δ}. Among
the neighbors, it then assigns the one with the highest
fitness as bestCandidate of the current iteration. If best-
Candidate achieves a better fitness than the current sBest
then sBest is replaced by bestCandidate. bestCandidate
is then inserted into the TabuList.

• Step 3: Step 2 is repeated until the termination condition
is matched. In this work, we used the number of evalua-
tions, i.e., the number of calls to the fitness functions, as
our termination condition.

C. Implementation Detail

We implemented our approach in Java, consisting of ap-
proximately 5000 lines of code. For identifying the mobile-
friendly problems in a web page, we used well-established
tools such as GMFT [3] and PSIT [4] APIs. For evaluating
aesthetics, we identify segments in a web page and build the
Segment Model and Intra-Segment Model by building a DOM
tree following a similar method in [14] with Chrome browser
v60.0 and Selenium WebDriver.

VI. EXPERIMENTAL RESULT

In this section, we empirically compare our approach
with the well-known automated webpage repair algorithm
MFix [14] on a dataset of real-world webpages. Below, we
describe our experimental methodology, including the data set
and evaluation metrics, followed by research questions and
numerical results.

A. Dataset and Evaluation metrics

To evaluate all algorithms, we perform the experiments on
the dataset Alexa used in MFix [14]. The dataset contains
38 real-world subject web pages collected from the top 50
most visited websites across all seventeen categories. Table I
presents the dataset’s details, such as the URL and category
of each web page. The datasets can be publicly accessed in
the Github repository of MFix

†
. In terms of evaluation, we

use two evaluation metrics proposed by S.Mahajan et al. [14]:
• Usability Score: We use Google PageSpeed Insights Tool

[4], which assigns pages a score in the range of 0 to
100, with 80 being an entirely mobile-friendly page, to
evaluate the usability of a web page. The higher the score,
the better the usability of a web page is.

• Aesthetic Score: The aesthetic score is a metric pro-
posed in [14] for measuring how beautiful a web page
looks. Based on the assumption that the original web

†
https://github.com/USC-SQL/mfix/tree/master/ICSE paper data/subjects

pages have the aesthetic layout, it is accounted for by
the relative visual positioning within the segments of a
page, such as Segment Model and Intra-Segment Model,
between machine-patched and original web pages. In this
way, the lower the aesthetic score, the more the page
is aesthetically pleasing. Note that, in this study, we
chose to use automated validation, which measures the
differences between the repaired page and the original
page, instead of a manual human to account for aesthetics.
Although we acknowledge the imperfection of automated
evaluation, human evaluation is expensive, e.g., the cost
to hire professional developers to ensure the quality of
the manual evaluation, and still this evaluation method
suffers from human biases. Automated validation, on the
other hand, is less expensive and does not suffer from
human biases. That is a reason why we choose automated
validation instead of manual human validation.

For each web page, we run TERA, PBRA, and MFIX, each
for ten times, and calculate the average to mitigate the non-
determinism inherent in the approximation algorithms. To en-
sure fairness between algorithms, we also use the same number
of evaluations (number of fitness calls) for all algorithms.
We also perform Wilcoxon signed-rank statistical tests [25] to
ensure that the performance difference between our proposed
solutions and the baseline is statistically significant. Our
experiments were conducted on a Macbook Pro machine with
an Intel Core i7 2.2 GHz and 16 GB of RAM, running macOS
Mojave 10.14.5

B. Research Question

We answer four research questions as described below.

RQ1: How effective is our approach in repairing mobile-
friendly problems in web pages as compared to MFix?
In this research question, we investigate the effectiveness of
our approach, as compared to MFix, to generate repairs in
the benchmark dataset that we describe in Section VI-A. Note
that our comparison relies on mobile-friendly tasks as well as
aesthetic layout tasks.

RQ2: How do different fitness functions impact on PBRA
and TERA effectiveness? By default, our approach uses
a fitness function with function G(Y) is quadratic. In this
research question, we compare different fitness functions to
explain why we selected the quadratic function as default.

RQ3: How efficient is TERA as compared to PBRA? In
this question, we investigate the efficiency between TERA and
PRBA by performing a comparison on their convergence rate.

RQ4: How do different population sizes impact on PBRA
effectiveness? By default, our approach selects an initial popu-
lation size of 10 for our approach. In this research question, we
compare different values of initial population size to explain
why 10 is the best option.

https://github.com/USC-SQL/mfix/tree/master/ICSE_paper_data/subjects

TABLE I: Statistics of real-world web-pages

ID Url Categories ID Url Categories
1 https://www.discogs.com Arts 20 https://www.wowprogress.com Games
2 https://xkcd.com Arts 21 https://bulbagarden.net Kids and teens
3 http://www.wiley.com Shopping 22 http://lolcounter.com Kids and teens
4 http://forum.gsmhosting.com/vbb Home 23 http://www.bom.gov.au Kids and teens
5 https://www.irs.gov Home 24 http://onlinelibrary.wiley.com Business
6 https://travel.state.gov Home 25 http://aamc.org Health
7 https://arxiv.org Science 26 https://www.fragrantica.com Health
8 https://bitcointalk.org Science 27 http://us.battle.net Kids and teens
9 http://coinmarketcap.com Science 28 http://blizzard.com Kids and teens

10 http://www.intellicast.com Science 29 http://drudgereport.com News
11 https://www.ncbi.nlm.nih.gov Science 30 https://www.irctc.co.in Regional
12 http://sigmaaldrich.com Science 31 http://dict.cc Reference
13 http://www.weather.gov Science 32 https://www.leo.org Reference
14 https://boardgamegeek.com Games 33 http://correios.com.br Society
15 http://www.finalfantasyxiv.com Game 34 http://www.flashscore.com Sports
16 http://www.mmo-champion.com Home 35 http://letour.fr Sports
17 http://www.nexusmods.com Games 36 http://rotoworld.com Sports
18 http://nvidia.com Games 37 http://us.soccerway.com Sports
19 http://www.square- enix.com Games 38 http://myway.com Computers

Fig. 2: Comparison of TERA, PBRA and MFix in Usability. The higher the usablity score, the more the mobile friendly.
Values above the red horizontal line drawn at 80 indicate that the GMFT considers a page to be mobile friendly.

TABLE II: Default setting for PBRA

Parameters Symbol Value
Population size T 10
Number of evaluations E 150
Inertial coefficient (start) ωs 0.9
Inertial coefficient (start) ωe 0.4
Acceleration coefficient (persional) c1 0.5
Acceleration coefficient (global) c2 0.5
Coefficient of randomness r1, r2 [0, 1]
Neighbor range ∆ 0.3
Fitness Function G(Y) −Y 2

TABLE III: Default setting for TERA

Parameters Symbol Value
Neighbor size sizeneighborhood 10
Number of evaluations E 150
Size of tabu list sizetabu 5
Neighbor range δ 0.3
Fitness Function G(Y) −Y 2

C. Numerical result

RQ1: Our approach’s effectiveness as compared to
MFix. To answer RQ1, we compare the effectiveness of our
approach including PBRA and TERA (with default settings on
Table II and Table III) with a well-known automated repair

Fig. 3: Comparison of TERA and PBRA versus MFix in aesthetics. The lower the aesthetic score, the more the page is
aesthetically pleasing. Values below the red horizontal line drawn at 100% indicate improvements over baseline.

(a) Usability (b) Aesthetics

Fig. 4: Impact of fitness function on convergence rate.

technique in mobile-friendly problems, MFix [14]. We also
performed statistical tests to study the significance of the
improvements by our approaches over the baseline. Rationale
behind default settings on table II and table III will be
explained by RQ3 and RQ4.

Experiment results show that PBRA outperforms MFix by
generating repairs that have much better usability and aesthetic
scores. Note that, as we described in Section VI-A, the higher
the usability score, the better the usability of a web page, and
the lower the aesthetic score, the more aesthetically pleasing
a web page is. From Figure 2, we can clearly find that our
approach, namely PBRA, outperforms MFix in 26 out of 38
pages and achieves almost the same performance with MFix
in other subject web pages. The results show that PBRA
is significantly better than TERA and MFix in the mobile-
friendliness task.

Figure 2 represents the usability of the repaired web pages

by using TERA, PBRA, and MFix. The red line shows a
threshold value of 80 - which is the minimum PSIT score
to be considered for good usability by GMFT [3]. We can see
that most of the repairs pass the PSIT threshold (36 out of 38
subjects).

The numerical results concerning aesthetic score are de-
picted in Figure 3. In Figure 3, we show the relative perfor-
mance of our approaches versus the baseline technique MFix
by dividing the aesthetics score of PBRA-patched and TERA-
patched pages by that of the MFix-patched pages. We do this
to normalize the results because of a wide range of aesthetics’
value, e.g., the aesthetics’ value can range from anywhere
greater than zero. Figure 3 shows that PBRA improves the
aesthetic score significantly, outperforming MFix on 29 out
of 38 subjects in aesthetics. TERA also shows considerably
better results than MFix on 24 out of 38 subjects.

We also perform Wilcoxon signed-rank test [25] to in-

vestigate the performance difference between our approaches
and MFix. The results point out that PBRA is significantly
better than both TERA and MFix in usability scores (with p-
values of 1.4 e-07 and 0.003, effect-size of 0.627 and 0.222,
respectively). PBRA and TERA also are better than MFix in
aesthetics (with p-values of 0.004 and 0.041, effect-size of
0.991 and 0.435, respectively).

RQ2: Impacts of the fitness function. In Section IV, we
introduce a novel fitness function to combine usability score
and aesthetic score. In the formula, G(Y) function plays an
important role in making adjustments to speed up the search
for friendly patches. However, the G(Y) function also needs
to be designed to avoid ignoring potentially good candidate
patches.

We have chosen some functions which satisfy the conditions
of G(Y) (in Section IV) to experiment with, such as:

• Exponential function G(Y) = e−Y

• Quadradtic function G(Y) = −Y 2

• Cubic function G(Y) = Y 3

We compare the effectiveness of the fitness functions on two
tasks: convergence rate, i.e., how fast a fitness function helps
the approaches to converge, and overall result. In the overall
effect, from Figure 4, we can clearly find that the quadratic
function is the most effective, followed by the cubic function
and exponential function. In convergence rate tasks, Figure
4 shows that our approach with exponential fitness function
converges quickly with values exceeding 80.

Indeed, exponential fitness function can converge well just
only within a small number of evaluations of candidate solu-
tions. However, when the number of evaluations is increased,
there is no significant improvement. Our experiments show
that cubic and quadratic fitness functions need more com-
putation time to achieve better results. One potential reason
could be that the exponential fitness function focuses on
improving usability score to exceed the threshold so that it
ignores potentially good candidate patches. In conclusion, the
quadratic function has the best fitness function for both PBRA
and TERA. We, therefore, have chosen the quadratic function
as the default fitness function for our approach.

RQ3: Convergence rates of PBRA and TERA. The first
RQ has demonstrated that PBRA outperforms TERA (36 out
of 38 on the mobile-friendliness test and 30 out of 38 on
aesthetics). In this RQ, we further investigate the convergence
rates of both PBRA and TERA to assess the efficiency of the
algorithms.

Our experiments on all pages suggest a similar trend
as shown in Figure 5, which is the result for the page
http://www.wiley.com. Figure 5 depicts the values of usabil-
ity score, aesthetic score, and fitness over generations. As
shown, TERA converges more quickly than PBRA, but PBRA
achieves better values than TERA.

Concerning usability score, TERA converges when the num-
ber of evaluations is 50, while PBRA needs 150 evaluations
to converge (see Figure 5a). TERA only needs 30 evaluations
to reach score 80 - which is the threshold to pass GMFT [3],

while PBRA needs 50 evaluations. This means that TERA and
PBRA can guarantee a high level of friendliness for repaired
pages, but TERA consumes less running time.

The convergence times of TERA and PBRA concerning the
aesthetic score are similar, as depicted in Figure 5b. Both of
them converge when the number of evaluations is 150. The
converged value of PBRA is much smaller than that of TERA.
Specifically, PBRA attains the aesthetic score that equals to
86% that of TERA. This result means that PBRA can provide
a better aesthetic than TERA.

RQ4: Impacts of Population Size Population size plays
an essential role in population-based meta-heuristic methods.
A small population size may not be sufficient to find good
results, while a large population size may hamper the conver-
gence rate. Therefore, we perform experiments with different
population sizes on two tasks: the convergence rate and overall
result. Figure 6 shows the impact of the population size on
the convergence rate of the algorithm. From the figure, we
can clearly find that the population size of 10 is the most
suitable value of the approach, while the population size of
5 and population size of 15 shows the worse result. Small
populations are more likely to experience the loss of diversity
over time because the mating between individuals with similar
genetic structures occurred regularly. Therefore, the search
space of the algorithm is narrowed, which usually leads to poor
results like the result of the population size of 5 in this case. In
contrast, large populations could make the algorithm consume
more computation time in finding an optimal solution. That is
the reason why algorithms with a population size of 15 have
poor results. This observation is further reinforced through the
experiment on the overall result, which is shown in Figure 7,
with five subjects and five different values of population size.

VII. THREATS TO VALIDITY

External Validity. Threats to external validity correspond
to the generalizability of our findings. Our evaluation dataset
contains 38 real-world web pages. Still, these subjects may
not represent all possible cases in reality, and thus our results
may not generalize. We tried to mitigate this by selecting
top-ranked websites from various categories. We plan to
experiment on a larger dataset in the future.

Internal Validity. Threats to internal validity refers to errors
in our implementation and experiments. To mitigate this risk,
we have carefully examined our code and experiments to avoid
potential errors. We have also repeated our experiments several
times to ensure that the results reported are correct.

Construct Validity. Threats to construct validity correspond
to the suitability of our evaluation metrics. Following MFix,
we consider web pages as mobile-friendly if it passes a
threshold value of 80, which is the minimum PSIT score for
good usability. These ratings are, however, subject to the PSIT
evaluation criteria only. Although PSIT is a popular tool to
assess usability, we plan to also include other tools to more
thoroughly assess usability.

(a) Usability (b) Aesthetics

Fig. 5: Comparison on covergence rate of TERA and PBRA

(a) Usability (b) Aesthetic

Fig. 6: Impact of population size on covergence rate

VIII. CONCLUSION

In this paper, we introduced automated approaches based
on a meta-heuristic algorithm for repairing mobile-friendly
problems in web pages. Our approaches strive for improv-
ing mobile-friendliness (usability) while minimizing layout
disruption (aesthetic) at the same time. To achieve this, we
designed a new novel fitness function to allow our search
algorithms to find better repairs more efficiently and effec-
tively. Our evaluations on a data set of 38 real-world defective
webpages show that our approaches generate good mobile-
friendly patches for 94% of the subjects and significantly
outperform existing state-of-the-art baseline technique MFix.
We have also studied the impact of different fitness functions
and parameters of the meta-heuristic algorithm on the overall
result and convergence rate. Overall, experimental results are

promising and indicate the usefulness of our approaches,
which may support developers in designing mobile-friendly
web pages.

In the future, we plan to improve the effectiveness and
efficiency of our solution further by designing better fitness
function to better optimize for both usability and aesthetic.
We also plan to curate more data to expand our experiments
on a larger dataset containing many more real-world projects.
Furthermore, we plan to integrate our approach into develop-
ment pipeline to interactively help developers develop better
web pages.

IX. ACKNOWLEDGEMENTS

We would like to thank Mahajan et. al for sharing their
implementation of MFix [14] and guiding us through the
experimental setup for MFix.

(a) Usability (b) Aesthetic

Fig. 7: Impact of population size on overall result

REFERENCES

[1] “Bing Mobile Friendly Test Tool,” https:www.bing.com/webmaster/
tools/mobile-friendliness, 2017, retrieved March 2020.

[2] “eMarketer Releases Updated Estimates for US
Digital Users,” https://www.emarketer.com/Article/
eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275,
2017, retrieved March 2020.

[3] “Google Mobile Friendly Test Tool.” https://search.google.com/test/
mobile-friendly, 2017, retrieved March 2020.

[4] “Google PageSpeed Insights Tool.” https://developers.google.com/speed/
pagespeed/insights/, 2017, retrieved March 2020.

[5] “Google. 2018. Consumer Study.” https://www.consumerbarometer.com/
en/insights/?countryCode=US, 2018, retrieved March 2020.

[6] M. E. Akpinar and Y. Yesilada, “Vision based page segmentation
algorithm: Extended and perceived success,” in Revised Selected Papers
of the ICWE 2013 International Workshops on Current Trends in Web
Engineering - Volume 8295. Berlin, Heidelberg: Springer-Verlag, 2013,
pp. 238–252.

[7] D. Chakrabarti, R. Kumar, and K. Punera, “A graph-theoretic approach
to webpage segmentation,” in Proceedings of the 17th International
Conference on World Wide Web, ser. WWW ’08. New York, NY,
USA: ACM, 2008, pp. 377–386.

[8] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[9] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[10] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[11] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 593–604.

[12] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 213–
224.

[13] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[14] S. Mahajan, N. Abolhassani, P. McMinn, and W. G. J. Halfond, “Auto-
mated repair of mobile friendly problems in web pages,” in Proceedings
of the 40th International Conference on Software Engineering, ser. ICSE
’18. New York, NY, USA: ACM, 2018, pp. 140–150.

[15] S. Mahajan, A. Alameer, P. McMinn, and W. G. J. Halfond,
“Automated repair of layout cross browser issues using search-based
techniques,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: ACM, 2017, pp. 249–260. [Online]. Available:
http://doi.acm.org/10.1145/3092703.3092726

[16] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond, “Effective
automated repair of internationalization presentation failures in web ap-
plications using style similarity clustering and search-based techniques,”
Software Testing, Verification and Reliability, vol. 31, no. 1-2, p. e1746,
2021.

[17] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th international conference on software engineering, 2016, pp. 691–
701.

[18] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[19] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Auto-
locating and fix-propagating for html validation errors to php server-side
code,” in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011). IEEE, 2011, pp. 13–22.

[20] P. Panchekha and E. Torlak, “Automated reasoning for web page layout,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016, pp. 181–194.

[21] R. Romero and A. Berger, “Automatic partitioning of web pages using
clustering,” in Mobile Human-Computer Interaction - MobileHCI 2004.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 388–393.

[22] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren,
“Automated repair of html generation errors in php applications using
string constraint solving,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 277–287.

[23] A. Sanoja and S. Gancarski, “Block-o-matic: A web page segmentation
framework,” in 2014 International Conference on Multimedia Comput-
ing and Systems (ICMCS), April 2014, pp. 595–600.

[24] X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei, “Automating pre-
sentation changes in dynamic web applications via collaborative hybrid
analysis,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, 2012, pp. 1–11.

[25] F. Wilcoxon, Individual Comparisons by Ranking Methods. New York,
NY: Springer New York, 1992, pp. 196–202.

https:www.bing.com/webmaster/tools/mobile-friendliness
https:www.bing.com/webmaster/tools/mobile-friendliness
https://www.emarketer.com/Article/eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275
https://www.emarketer.com/Article/eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275
https://search.google.com/test/mobile-friendly
https://search.google.com/test/mobile-friendly
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://www.consumerbarometer.com/en/insights/?countryCode=US
https://www.consumerbarometer.com/en/insights/?countryCode=US
http://doi.acm.org/10.1145/3092703.3092726

	I Introduction
	II Related Work
	III Our Framework
	IV Formulation and Fitness Function
	V Proposed Algorithms
	V-A PBRA: A pso Based Repair Algorithm
	V-B TERA: a Time Efficient Repair Algorithm
	V-C Implementation Detail

	VI Experimental Result
	VI-A Dataset and Evaluation metrics
	VI-B Research Question
	VI-C Numerical result

	VII Threats to validity
	VIII Conclusion
	IX Acknowledgements
	References

