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Abstract—Fault localization has been used to provide feedback
for incorrect student programs since locations of faults can be
a valuable hint for students about what caused their programs
to crash. Unfortunately, existing fault localization techniques for
student programs are limited because they usually consider either
the program’s syntax or semantics alone. This motivates the new
design of fault localization techniques that use both semantic and
syntactical information of the program.

In this paper, we introduce FFL (Fine grained Fault
Localization), a novel technique using syntactic and semantic
reasoning for localizing bugs in student programs. The novelty
in FFL that allows it to capture both syntactic and semantic
of a program is three-fold: (1) A fine-grained graph-based
representation of a program that is adaptive for statement-level
fault localization; (2) an effective and efficient model to leverage
the designed representation for fault-localization task and (3) a
node-level training objective that allows deep learning model to
learn from fine-grained syntactic patterns. We compare FFL’s
effectiveness with state-of-the-art fault localization techniques
for student programs (NBL, Tarantula, Ochiai and DStar) on
two real-world datasets: Prutor and Codeflaws. Experimental
results show that FFL successfully localizes bug for 84.6% out
of 2136 programs on Prutor and 83.1% out of 780 programs
on Codeflaws concerning the top-10 suspicious statements. FFL
also remarkably outperforms the best baselines by 197%, 104%,
70%, 22% on Codeflaws dataset and 10%, 17%, 15% and 8% on
Prutor dataset, in term of top-1, top-3, top-5, top-10, respectively.

Index Terms—Fault Localization, Programming Education,
Graph Neural Network

I. INTRODUCTION

Fault localization is the problem of identifying faulty lo-
cations in source code which leads to erroneous behaviors
triggered when running a test suite. Due to large variability
of faulty causes, it is a challenging problem to narrow down
the possible root causes from the triggered failure. This is
especially hard for students, where they may have little famil-
iarity with the programming language for identifying faulty
locations as well as root causes.

Unfortunately, most of existing methods focusing on the
real-world programs are not optimized to be effective in the
student programs due to the differences between the former
and the latter. As an example, current state-of-the-art tech-
niques [20], [21], [23] aim to locate bugs only on the method
level, making them hard to be used for student programs, since

most of student programs would consists only of a few meth-
ods. This motivates a research direction of fault localization
which focuses on students programs, as proposed by recent
studies [2], [8], [9], [14]. By providing hints of potential bugs’
locations, fault localization techniques give useful instructions
to students. Indeed, the user studies reported by Edmision et
al., [8] have shown that fault localization techniques enable
students to make improvements on their code from submission
to submission, as well as supporting students to spend less time
achieving the maximum score in overall.

Fault localization techniques for student program usually
fall into one of the following categories: learning-based ap-
proaches and spectrum-based approaches. The former leverage
historical data and a deep learning models to learn how
to localize bugs in student programs. Meanwhile, the latter
leverage spectrum-based fault localization techniques [1], [4],
[17], [39], that is widely used for industrial-scale programs, to
output the suspiciousness of code statements based on analysis
on the coverage data of failed/passed tests.

The learning-based approaches [14], [15], while have shown
capability on learning syntactic patterns from historical data,
ignore semantic information of programs such as test cov-
erage or execution traces. Meanwhile, the spectrum-based
approaches [1], [4], [17], [39] only consider test coverage
as the most effective input and ignore the information from
source code. This motivates the new design of fault localiza-
tion techniques that can utilize both syntactic and semantic
information present in student programs.

In this paper, we introduce FFL (Fine grained Fault
Localization), a novel technique using syntactic and seman-
tic reasoning for localizing bugs in student programs. FFL
utilizes both syntactic and semantic information of the pro-
gram for fault localization via our new design of three main
components: (1) graph-based representation, namely syntax-
coverage graph, of a program that comprises syntax and
program semantic information via Abstract Syntax Tree and
detailed coverage of given tests into one graph; (2) an effective
and efficient deep learning model (i.e., graph neural network
(GNN)) which is able to naturally deal with graph-based
representations; and (3) a node-level training objective that
allows deep learning model to learn from fine-grained syntax
patterns.



Compared to other learning-based fault localization tech-
niques (e.g., NBL [14], DeepFix [15]), our technique is highly
customizable by design, enabling an easy inclusion of both
syntactic and semantic information of a program. DeepFix
[15] represents a student program as a sequence of tokens
and uses Recurrent Neural Network (RNN) to develop deep
learning model to fix syntactic (compilation) errors. This type
of errors is different from our method’s aim of fixing logical
errors that fail on certain test cases. Low et al. [23] aim for
method-level fault localization and thus leverage statement-
level AST to represent syntactical information. Our aim is
more aligned to NBL [14], in which we both address the
problem of fault localization of student programs. The main
characteristic of student programs is that they are often small
in size and errors often lie in sub-statement level (e.g., small
AST nodes). Thus, the goal here is to accurately pinpoint
error locations at fine-grained level. NBL [14] converts each
program’s AST into an adjacency-list-like representation, train
a Convolutional Neural Networks to predict test cases’ out-
come, and leverage neural attribution techniques to obtain
each line’s suspiciousness score. Incorporating richer semantic
information such as test coverage into these representations is
difficult because it requires to encode structural information
into a single sequence or list of sequences. It can be seen that
for both of these representations, it is difficult to incorporate
semantic information such as code coverage and can suffer the
loss of code structure information.

To address the aforementioned problem, a potential solution
is by using a graph-based coverage representation. For exam-
ple, Lou et al. [23] represents both program statements and
their coverage relationships to test cases in one unified graph.
However, we observe that student errors often lies on sub-
statement-level e.g., if statement conditions, logical operators
or type cast operators, as reported by Tan et al. [33] (see
Codeflaws site for additional details1). Hence, these recently
introduced graph-based program representations which usually
focus on method-level, may be not suitable for our focus,
i.e., student program. Thus, we leverage fine-grained syntax
representation, i.e., AST-node level instead of statement-level
in conjunction with code coverage as semantic information
by connecting each node belonging to a statement to test
cases which cover the statement. We design a graph neural
network (GNN) along with a node-level training objective to
extract features from the proposed representation. FFL learns
to detect the combination of intra-syntax and inter syntax-
coverage pattern that is likely to be faulty. By this way,
our approach can effectively capture fine-grained patterns for
localizing bugs in student-written programs.

Given a student program and a set of test cases (passing
and failing), FFL works in two main phases. In the first phase
of input preparation, we leverage the program syntax (i.e.,
the Abstract Syntax Tree (AST)) and augment this syntax
representation with code coverage information using test cases,
resulting in a new representation, which we call syntax-

1https://codeflaws.github.io/

coverage graph. In the second phase, we first leverage a graph
neural network to predict suspiciousness scores at AST node
level (i.e., the probability of each AST node being modified to
fix bugs). We then aggregate AST-node-level results to obtain
the statement-level faulty score.

We evaluated FFL on 2,136 buggy programs from the
Prutor dataset [5] and 780 programs from Codeflaws dataset
[33]. We compare FFL against the state-of-the-art spectrum-
based and learning-based fault localization techniques for
student programs, consisting of NBL [14], Tarantula [17],
Ochiai [1] and DStar [38]. Experimental results show that FFL
successfully localizes bugs for 84.6% out of 2,136 programs
on Prutor and 83.1% out of 780 programs on Codeflaws when
reporting the top-10 suspicious lines. FFL also remarkably
outperforms the best baselines by 197%, 104%, 70%, 22%
on the Codeflaws dataset and 26%, 17%, 22% and 38% on
the Prutor dataset, in term of top-1, top-3, top-5, top-10.

In summary, our contributions include:
• We propose a novel technique, namely FFL, that is the

first to combine syntactic and semantic information to
automatically localize bugs in student programs.

• We propose syntax-coverage graph that can capture fine-
grained syntax-semantic representation of programs at
AST node-level.

• We design a graph-based deep learning model and a
novel training objective to effectively and efficiently
learn the proposed graph-based representation for ranking
suspicious program statements.

• We conduct evaluations on two popular datasets of stu-
dent programs. Experiment results show that the unique
combination fine-grained syntactic and semantic infor-
mantion at AST node-level empowers FFL to achieve
significant improvements over state-of-the-art baselines.

The remainder of this paper is structured as follows. Section
II introduces background and related works on the fault
localization and graph neural network, followed by Section III
that presents our approach in detail. Section IV describes our
experimental setup and our findings. Section V presents threats
to validity of our approach. Finally, Section VI concludes and
presents future work.

II. BACKGROUND & RELATED WORK

A. Fault Localization

Problem formulation In this work, we formulate the fault-
localization in student programs as follows:
• Input: A student program and a set of failing and passing

test cases.
• Output: Suspiciousness score indicating the likelihood of

a statement being faulty.
To address this problem, we build a deep neural network
model to classify whether each node in the AST of the
student program source code is faulty. We take the output
probability of this model to calculate suspiciousness score
of each statement in the aforementioned program. Note that,
different from repair-based feedback generation for student

https://codeflaws.github.io/


program [35] our problem formulation does not require the
existence of reference programs i.e., a correct implementation
provided by teachers/tutors.

Spectrum-based Fault Localization Spectrum-based fault
localization (SBFL) [1], [17], [18], [22], [24], [27], [40],
one of the most popular FL techniques, which considers
program entities (e.g., statements, methods, classes) executed
by test cases. These techniques take a buggy program and
coverage information of all tests as the input and return a
ranked list of program entities according to their descending
order of suspicious scores. These scores can be calculated
by specific formulae, which mainly rely on: (1) the set of
all failed/passed tests, i.e., Tf/Tp, (2) the set of failed/passed
tests executing code element e, i.e., Tf (e)/Tp(e), and (3)
the set of failed/passed tests that do not execute code ele-
ment e, i.e., Tf (ē)/Tp(ē). For example, Ochiai formula can
computes the suspiciousness score of the program entity e

as Susp(e) =
|Tf (e)|√

|Tf |×(|Tf (e)|+|Tp(e)|)
. While SBFL has been

widely adopted, recent studies [2], [7]–[9] proposed to apply
SBFL for providing feedback about the root cause of failure in
student programs. Edmison et al. [9] have demonstrated that
this feedback help students find it easier to make improvements
on their code, as well as spending less time overall achieving
the maximum score on the instructor assessments. While these
techniques have shown their usefulness in providing feedback
for students, their effectiveness still needs to be further im-
proved to localize bugs more accurately. Compared to their
approaches, FFL supplements syntactic patterns learned from
historical bugs using a novel graph-based learning technique
to improve effectiveness in localizing bugs. Our experiments
demonstrate that FFL outperforms the well-known SBFL
techniques (i.e., Tarantula [17], Ochiai [1] and DStar [38])
by a significant margin (see details in section IV-C).

Learning-based Fault Localization. While Machine/Deep
learning has recently emerged as a powerful framework in
solving real-world problems, it can be adopted to improve
the effectiveness of fault localization for student programs as
pioneered by NBL [14]. The basic idea of NBL is to learn the
potential faulty locations via frequent buggy patterns from his-
torical bugs. Toward this, NBL first represents a program in the
form of Abstract Syntax Tree; then, it converts the AST into
an adjacency list-like representation via performing breadth-
first traversal. Finally, NBL utilizes a Convolutional Neural
Network (CNN), and neural prediction attribution [32] to
predict bug locations. Compared to NBL, our approach designs
graph-based representations, allowing FFL to easily include
both program syntax and semantic information (i.e., code
coverage). Furthermore, we also proposed to use Graph Neural
Network (GNN), which demonstrated its superior effectiveness
on rich-structured data like source code of programs [6], [11],
[13], [41]. Less relevant to our work in this paper are recent
research efforts in learning-based fault localization for real-
world programs [3], [20], [21], [23], [31]. The current state-of-
the-arts among these works, however, [21], [23] only focus on
method-level fault localization and ignore statement-level fault

Fig. 1: GNN message passing illustration for two nodes. The
rounded rectangular nodes represent test cases, and the ellipsis
node represents AST nodes. The target node of message
passing process (highlighted in yellow) takes into account its
neighbor information as well as the edge type for updating it
own hidden features.

localization. This makes it difficult to apply these techniques
to student programs, which require a finer-grained localization
at statement level due to their small size.

B. Graph Neural Network

Graph Neural Networks (GNNs) is family of a widely-used
deep learning techniques for processing data represented by
graph-structured data such as knowledge graphs [34], social
networks [42] and images recognition [37]. The basic intuition
of GNNs is that each node in a graph G = (V,E) can be
characterized in terms of: (i) its own features, (ii) the relations
it has with its neighboring nodes, and (iii) the features of its
neighbors. Toward this, GNNs learn representations of nodes
via the message passing process [11], in which each node
features are updated via a message that gathers information
from its own features and the neighbors’ features. The message
passing operation works with all nodes in parallel, updating
each node feature of the graph as a result. By stacking T
consecutive message passing process, a T -layered GNNs is
obtained, where each layer enriches graph node representations
while allowing aggregation of features from an extra neighbor
hop.

Formally, suppose we have a graph G = (V,E) where V
is the set of nodes, and E is the set of edges. Each node
in G retains a node feature x, and each edge is assigned an
edge feature e. More specifically, at layer t, each existing node
i with assigned feature x

(t)
i will be updated to new feature

x
(t+1)
i as follows:

m
(t+1)
i =

∑
j∈N (i)

fmess(x
(t)
i ,x

(t)
j , eij) (1)

x
(t+1)
i = fupd

(
x
(t)
i ,mi

)
(2)

where fmess and fupd is the message function and update
function for t-th layer and N (i) is node i’s set of neighbor.

The message passing mechanism is applied to the GNN
of FFL in order to aggregate information from both syntax
and coverage neighbor nodes, 1 hop at a time for each node



Fig. 2: The overview framework of FFL

in parallel as shown in Figure 1. At each message passing
operations, every node takes into account the type of edge as
well as information of neighboring nodes to update its own
hidden representation.

III. OUR APPROACH

In this section, we introduce a deep learning model over
syntactic and semantic features for fault localization in student
programs. Toward this goal, we describe a graph-based rep-
resentation comprising of both program syntax (i.e., Abstract
Syntax Tree) and semantic features (i.e., coverage informa-
tion) with a tailored graph neural network (GNN) to identify
buggy locations based on this representation. The key idea
is that by leveraging the graph-based representation, we can
treat fault localization problems as node classification on a
graph, in which we predict whether each node in a graph is
erroneous. Furthermore, while aiming for statement-level fault
localization is a straightforward option, we hypothesize that a
node-level feedback signal would boost model performance.
Thus, we design a training objective based on node-level AST
differencing as the label for graph node classification.

A. Syntactic and Semantic Program Representation

GNN is widely known for its effectiveness in dealing with
structured data. However, in order to leverage the power of
GNN, designing an expressive representation of the input data
is crucial.

To achieve this, we propose to use both syntax and semantic
information to build a graph-based representation of input
programs that empowers GNN to learn effectively.

Fig. 3: Syntax-Coverage graph: Program syntactic is repre-
sented by AST while the semantic is represented via coverage
information

Finally, we obtain a representation that combines both
syntactic and semantic information, namely syntax-coverage
graph. We lay out the details of our syntax-coverage graph
construction below.

1) Syntactic Representation via Abstract Syntax Tree: In
the syntax-coverage graph, we incorporate program syntax by
leveraging AST as a subgraph in our representation. In detail,



given an abstract syntax tree in the form of a graph Gast =
(Vast, East), where each node v ∈ V represents a node in the
abstract syntax tree, a directed edge (vi, vj) ∈ East exists for
every parent-child in the AST, we incorporate every node in
the abstract syntax tree as a part of our syntax-coverage graph
(i.e. Vast ⊆ VH and East ⊆ EH ). As an illustration, AST
nodes are represented as ellipse-shaped nodes in Figure 3.

2) Semantic Representation via coverage information: As
another part of the syntax-semantic representation, we include
semantic features via test coverage information. Given a test
suite T = {t1, t2, t3, . . . tNT

} where ti for i ∈ 1..NT is
a test case, we represent each test case as a node in the
syntax-coverage graph. In order to enrich the syntax-coverage
representation, we obtain the outcome for each of these test
cases by running the test suite and embed the outcome of into
their corresponding edges between their test nodes and the
covered AST nodes: For the example in Figure 3), since test
t0’s outcome is passed, its connections towards the covered
AST nodes are passing edges (dotted edges), for the failed test
t1, the edges will be of failing type (dashed edges in Figure 3).
This aids the GNN model in distinguishing test case types (i.e.
passed or failed) and aggregating this information towards its
covered AST node. Subsequently, this representation allows
FFL learning to make use of both faulty syntax patterns
and syntax-coverage patterns that frequently presents in the
dataset.

B. Proposed Model

An overview of FFL’s architecture is shown in Figure 2.
FFL works in two phases. In the training phase, it learns a
deep learning model to determine whether each AST node in
the syntax-coverage graph is faulty. The training data consists
of a set of historical bugs, consisting of a buggy program, a set
of tests (failing and passing), and ground truth bug locations.
The training phase of FFL consists of two main steps:
• Input Preparation. (Section III-B1) FFL first uses AST

parser and coverage analysis tool to produce AST tree
and coverage information of program. Then, it uses a
graph builder to construct syntax-coverage graph of input
program.

• Node classification via GNN. (Section III-B2 and III-B3)
FFL takes the syntax-coverage graphs and the ground
truth locations to train a graph neural networks that
determines whether a syntax-coverage graph’s AST node
is faulty. This model is the overall output of the training
phase that is passed to the deployment phase.

In the deployment phase (Section III-B4), FFL takes as
input a set of test cases (including both failing and passing
tests) and a buggy program, and constructs syntax-coverage
graphs through input preparation. After that, FFL uses the
pre-trained model to produce a suspiciousness score for each
node of syntax-coverage graphs. Then, FFL computes the
suspiciousness score of a statement by aggregating the score of
each node that belongs to the statement. Finally, FFL produces
a ranked list of statements that are likely responsible for the
failing test cases.

1) Input Preparation: Given a buggy program and a set
of tests (passing and failing), FFL constructs syntax-coverage
graph G as follows. We first parse the buggy program by
pycparser 2 to obtain AST representations Gast for the
program. Simultaneously, we run the buggy program over the
given tests and perform coverage analysis by using gcov 3 to
obtain coverage information.

Note that, gcov only provides coverage information at
statement level. Hence, we associate the line-level coverage
information obtained by gcov to the AST nodes by connecting
each node in a statement to test cases that cover the statement.
Then, FFL connects Gast of each program into one graph
by including test nodes and coverage edges according to
coverage information. Finally, we annotate each node and
edge with its attributes in the graph. As mentioned in Section
III-A, we annotate nodes and edges of AST following its
type generated by pycparser. Meanwhile, test nodes and
coverage edges types are determined based on test outcomes.
More specifically, the edge will be of passing type if the test
outcome is passed; otherwise, the edge will be of failing type.

2) Graph Neural Network Architechture: Given heteroge-
neous syntax-coverage graph GH = (VH , EH) where VH =
Vast∪Vtest and EH = East∪Ecov . We proposed a GNN that
takes input as GH and provides a prediction label for each
node v ∈ Vast. As input representation of GNN, we use an
embedding layer to retrieve numerical feature representation
of each node and each edge. This input is then fed through
several message passing layers, with each layer updating each
node feature. We take each node’s representation output of
the last layer and calculate node label prediction. Finally, we
aggregate the node-level predictions to retrieve statement-level
suspicious scores from them.
Embedding layer. Each node in the syntax-coverage graph
should be assigned with a corresponding node type t ∈
Tnodes where Tnodes is the set of all node labels (e.g.
FuncCall, If , T est etc. ), which we leverage to obtain the
numerical feature of each node in the input graph. In de-
tail, each node type t is encoded using an one-hot vector
xt ∈ {0, 1}|Tnodes|, where each dimension in the vector is set
to 1 if the node is of corresponding type. We stack these node
features to obtain the feature matrix X0

H ∈ {0, 1}|VH |×|Tnodes|.
Finally, we apply a linear transformation to X0

H to obtain
hidden representation H(0) ∈ RF (0)

where F (0) is a chosen
hyper-parameter for embedding. Each row of h

(0)
i = H

(0)
i,:

corresponds to a node’s embedding.
Message-passing layer. Given node embedding, we leverage
graph input structure to update hidden node features through
layer via widely-used message passing mechanism [11]. The
specifically chosen message passing mechanism has to be
flexible towards multiple types of edges. For this task, we
choose R-GCN [30] which has been known for its capability
in dealing with heterogeneous graph, its form is shown below:

2https://github.com/eliben/pycparser
3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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Where l is the layer index, σ is ReLU activation function
[26], W(l)

r ,W
(l)
0 ∈ RF (l)

,b(l) is layer l’s learnable parameter,
RF (l)

is a hyper parameter of choice and N r
i is 1−hop

neighbor having relation of type r with the node of target.
Intuitively, each node feature is updated in parallel.

After passing through L GNN message passing layers [11],
we obtain L-th hidden feature matrix of each node: H(L) ∈
RF (L)

Output layer. Each of node’s classes probabilities are obtained
by applying a linear transformation followed by class-wise
softmax:

O = softmax
(
WoH

(L) + bo

)
∈ [0, 1]|VH |×C (4)

Where Wo and bo are learnable parameters and C is the
number of classes. Each row oi = O[i, :] ∈ RC represent
each node’s probability of belong to each class. In our case
C is set to 3, with classes 0, 1, 2 correspond to unmodified,
modified, and inserted respectively.

3) Training objective: To prepare labeling for training, we
make use of Gumtree fine-grained AST differencing algorithm
[10]. Taking as input the source code of two versions, one
buggy and one fixed source code, Gumtree output mapping
between AST nodes of the source code to a fixed version.
We determine the unmodified, modified, inserted nodes via the
following procedure:
• Modified nodes are either removed or changed in con-

tent: In the former case, we search nodes having no
correspondence from the buggy to fixed version whereas
to identify the latter, we find nodes having its content
changed between the buggy and fixed version.

• Inserted nodes are nodes that have no correspondence
from the fixed version to the buggy version.

We perform automated annotation on the buggy source code
version based on the aforementioned procedure. Inserted node
is tricky to annotate due to its lack of appearance in the under-
annotation buggy source AST; for this, we further use these
annotations:
• For token/expression-level modification, we would take

the parent that has not been modified in the buggy version
and label the parent node as insertion.

• For statement-level insertion, we take the previous state-
ment for annotation of modification the common parent
to be annotated as inserted

With this, we obtain fine-grained annotation for training and
evaluation (see Figure 4 for an illustration).

Since our final objective is statement-level suspicious score,
a straightforward approach might be performing classification
on statement nodes: where we classify whether each statement
contains modified or inserted element. However, since we wish
to learn fine-grained AST transformation, we instead adopt

node-level classification to predict which of the aforemen-
tioned classes each node belong, then aggregate these detailed
prediction to obtain statement-level prediction. We show the
effectiveness of node-level classification in comparison with
statement-level classification in Section IV-C.

In order to classify each node to one of the aforementioned
classes, cross entropy objective is a popular objective function,
which we leverage to learn node-level classification on each
graph:

Lθ(O,L) = −
∑
c∈C

i∈1..|VH |

Li,c log oi,c (5)

Where L ∈ 0, 1|VH |×C is label annotation obtained from
aforementioned annotation process for each node and oi,c is
the probability of node i belonging to class c. For our main
approach, class c can be either unmodified, modified or inserted
and i indicate each node in AST Tree. For statement-level ver-
sion used for comparison in Section IV-B, the class c is either
unmodified or modified and i indicate each statement node
in the AST tree. As mentioned, since node-level prediction
is different from our final objective of statement-level fault
localization, we introduce the process of obtaining statement-
level fault localization from node-level prediction below.

4) Applications: After the training phase, users can lever-
age the trained FFL to determine statements that are likely
to be responsible for the failure of their programs. Given a
student program that is failing in the grading system (i.e. it
fails at least one test case), FFL first constructs a syntax-
coverage graph via input preparation and combines the trained
GNN model’s node level output wih a statement-level Ranking
Model as follows to provide statement-level suspicious score:
• Node suspiciousness. In this step, FFL uses the trained

GNN model from training phase to produce a suspicious-
ness score scorei for a node i of the syntax-coverage
graph as follows:

scorei = 1− oi,0 (6)

Here, oi,0 represents the probability that node i should
be unmodified.

• Statement Prediction Aggregator. Since our target is
statement-level prediction, as our current GNN prediction
targeted AST nodes in general (i.e. expression/token are
also included), we introduce our method to convert from
the AST-node prediction to the corresponding statement
suspiciousness score. In detail, the suspiciousness score
of a statement is calculated by taking the maximum of
all nodes in its correspoding subtree S in AST. More
formally, given a statement s with correspoding subtree S
in AST, we computed its suspiciousness score as follows:

Susp(s) = max
i∈S
{scorei} (7)

Where scorei is the node’s suspicious score calculated
in Equation 6.

Finally, we use the scores from Statement Aggregator to rank
statements’ suspiciousness.



(a) Buggy code (b) Corresponding AST of buggy version

(c) Fixed Code (d) Corresponding AST of fixed version

Fig. 4: Illustration example for fine-grained annotation.

IV. EMPIRICAL EVALUATIONS

A. Experimental Methodology

1) Dataset: To evaluate the effectiveness of fault localiza-
tion techniques in the student program, we use two bench-
marks introduced in previous works [14], [33], which contain
student-written programs for programming assignments from
real-world tutoring systems, Prutor [5], and Codeforces [25].
The type of test provided in both 2 datasets is system-
level testing, the tests are presented in the form of input-
output examples. In order to construct the dataset, we leverage
Gumtree [10] to capture the changes between the AST tree of
buggy and fixed programs. Note that, since Prutor does not
originally contain the buggy-fixed pairs as Codeflaws [33],
we construct these pairs using the implementation4 provided
by [14]. The details of dataset distribution are shown in Table
I.

TABLE I: The statistics of datasets.“# Programs” represents
the number of buggy programs in each datasets. “# KLOC”
and “# Test” correspond to average size of the program and
number of test cases, respectively.

Dataset #Programs #KLOC #Test
Prutor 6,171 25 8
Codeflaws 3,902 36 43

Prutor was collected from an introductory programming
course at the Indian Institute of Technology, Kanpur, India
using a programming tutoring system called Prutor [5]. The

4https://bitbucket.org/iiscseal/nbl

dataset contains 6,171 buggy programs across these 29 algo-
rithmic implementation tasks with a total of 231 tests. Each
program in Prutor datasets contains about 25 lines of code on
average.
Codeflaws was extracted from submissions in Codeforces
[25], a well-known programming contest website. The dataset
contains 3,902 buggy programs across these 1,284 algorithmic
implementation tasks with 43 tests on average. Each program
in Codeflaws datasets contains about 36 lines of code on
average.

2) Evaluation Metrics: In this paper, we use top-n which
counts the number of bugs successfully localized within top-n
position of the resultant ranked list as our evaluation metric,
which is also commonly used in prior works [3], [14], [20],
[21] following findings of Parnin and Orso [29] that program-
mers will only inspect the first few positions in a ranked list
of potentially buggy statements. Followings prior studies [14],
[21], we report top-1, top-3, top-5 and top-10. Note that if two
statements share the same suspicious score, we break the tie.
Higher is better for this metric.

3) Experimental Settings: We implement the proposed
model by DGL [36] library and Python programming lan-
guage. The model is trained and evaluated on an NVIDIA
GTX 1080 Ti GPU with 11GB of graphics memory. We
train the model from scratch using Adam optimizer with the
learning rate of 0.0001. We randomly selected 60% samples
for the Codeflaws dataset as the training set, 20% samples as
the evaluation set, and 20% for validation. For Prutor dataset,
we follow settings of NBL [14], which use 2,136 samples
as evaluation set and 4,035 samples for the training set and

https://bitbucket.org/iiscseal/nbl


validation.

B. Research Question

RQ1: How effective is FFL? In this research question,
we evaluate how effectively FFL successfully localize bugs
for 2,136 program in Prutor datasets and 780 programs in
Codeflaws datasets, computing top-n with n ∈ {1, 3, 5, 10}.
RQ2. How does FFL compare to previous approaches?
In this research question, we compare FFL to four previous
techniques, including:

• NBL [14]: the current state-of-the-art of bug localization
on student program.

• Ochiai [1], Tarantula [17] and DStar [38]: well-known
bug localization techniques for industrial-scale programs.

RQ3: How efficient is FFL? In this research question, we
measure the average running time needed for FFL to output a
ranked list of statements for a given bug.

RQ4: How effective is our approach using fine-grained
representation and loss function at AST node level? In this
research question, we study the effect of representation and
loss function on the overall performance of our approach. In
particular, we evaluate the use of statement-level and node-
level representions, as well as, statement-level and node-level
loss functions. Note that, by default, our approach uses node-
level representation and loss function. For all experiments in
this study, we use the same model described in Section III-B2,
which consists of a single linear encoding layer followed by
5 R-GCN layers.

C. Findings

1) RQ1: Overall Effectiveness: As shown in Table II, FFL
is able to localize bug for more than 80%, concerning the top-
10 suspicious lines per program, for both evaluation datasets:
Codeflaws and Prutors. In detail, FFL successfully localizes
83.1%, 67.6%, 46.2% and 31% out of 780 bugs of Codeflaws
datasets in terms of average top-10, top-4, top-3 and top-
1 positions, respectively; whereas the results for Prutor are
84.6%, 64.7%, 51.6%, 29.6% respectively.

TABLE II: Overall effectiveness of FFL on Codeflaws and
Prutor datasets in term of top− n(%).

Dataset top-10 top-5 top-3 top-1
Codeflaws 83.1 67.6 46.2 31
Prutor 84.6 64.7 51.6 29.6

We emphasize that there exists significant differences in
distribution between the two datasets: In particular, Prutor con-
tains about 6,200 student programs for 29 programming tasks,
which is equivalent to 213.8 programs per task. Meanwhile,
Codeflaws only provide 2.7 programs per task (3,902 student
programs for 1,428 programming tasks), nearly 50 times lower
than Prutor. Moreover, Prutor only provide 8 tests per program
while each program of Codeflaws contains 43 tests on average.

Despite of these differences, we note that FFL’s performance
remains stable while consistently outperforms the varied per-
formance of the baselines as proven in RQ2.

Answers to RQ1: FFL has promising performance
in bug localization on student programs. FFL is able
to localize at least one bug for 84.6% on Prutor and
83.1% on Codeflaws when considering the top-10
suspicious statements.

2) RQ2: Comparison with Baselines: Figure 5a and 5b
show the effectiveness of FFL and four baselines on the
two evaluation datasets: Codeflaws and Prutors. Among the
techniques, FFL outperforms baselines in all metrics.

FFL vs. Learning-based Fault Localization. FFL outper-
forms NBL by 38%, 22%, 17% and 26% on Prutor dataset
and 24%, 71%, 272% and 780% on Codeflaws dataset, in
terms of average top-10, top-5, top-3, top-1. It can be seen that
FFL shows an improvement of at least 20% on most metrics,
especially our approach achieves 3 and 8 times higher top
than NBL on Codeflaws dataset concerning top-3 and top-1
suspicious lines, respectively. Furthermore, the performance
of NBL drops remarkably when switching from Prutor to
Codeflaws. The reason behind this slide is the difference
between two datasets (as discussed in RQ1). It shows that
NBL is less effective on datasets where programs are diverse
and almost different. Meanwhile, the effectiveness of FFL is
almost stationary, showing that FFL is able to deal with various
types of datasets due to the ability of capturing frequent buggy
patterns.

FFL vs. Spectrum-based Fault Localization. The evaluation
result shows that FFL perform stably in both datasets while
spectrum-based techniques are only effective in Prutor dataset
and achieve much more lower result in Codeflaws. Hence,
although FFL only perform better than spectrum-based tech-
niques by 8%, 15%, 17%, and 10% on Prutor dataset, our
approach remarkably outperforms these techniques by 22%,
70%, 104% and 197% on Codeflaws dataset, in terms of top-
10, top-5, top-3, top-1, respectively.

Answers to RQ2: Overall, FFL outperform ev-
ery baseline approach, including the state-of-the-art
learning-based approach for student programs, NBL.
As compared to the best baseline, our approach
achieves an improvement of 197%, 104%, 70%, 22%
on Codeflaws dataset and 10%, 17%, 15% and 8% on
Prutor dataset, in term of top-1, top-3, top-5, top-10.

3) RQ3: Efficiency: The average time to output a ranked list
of statements for a given program from Prutor is 0.009 seconds
with a standard deviation of 0.001 seconds. Meanwhile, these
numbers for Codeflaws are 0.0014 and 0.012, respectively. In
particular, FFL required only 0.009 seconds for localizing bugs
in the best case in both datasets. In the worst case, FFL also
consumes less than 0.3 second (0.253 seconds). In conclusion,



(a) Results on Codeflaws (b) Results on Prutor

Fig. 5: Comparison of FFL with four baseline techniques on the 2 datasets, in term of top− n(%)

it can be seen that the inference time of FFL is reasonable in
practice.

Table III shows the average inference time for FFL on two
evaluation datasets: Prutor and Codeflaws.

TABLE III: Inference time of FFL (in seconds)

Dataset Mean Std Max Min
Prutor 0.009 0.001 0.010 0.009
Codeflaws 0.014 0.012 0.253 0.009

Answers to RQ3: FFL has reasonable inference time
in practice with 0.009 and 0.014 seconds on average
for localizing bugs from Prutor and Codeflaws, respec-
tively. In the worst cases, FFL also consumes less than
0.3 second for prediction.

4) RQ4: How effective is FFL using fine-grained represen-
tation and loss function at AST node level?: As shown in
Table IV, the model trained with node-level training objective
outperforms the one trained with statement-level objective on
evaluation metrics in both evaluation datasets.

It can be seen that, node-level training objective shows
improvement of 32%, 8%, 20%, 13% on Codeflaws dataset
in terms of top-1, top-3, top-4, top-10. On Prutor dataset,
however, statement-level training objective nearly approximate
node-level training objective in top-5, top-1 and even outper-
formed in top-3 for node-level AST and top-10 for statement-
level AST respectively. Additionally, statement-level AST
performs much better in Prutor while exhibiting a decrease
in recall on Codeflaws. The rationale behind this may be
attributed to the ratio of sub-statement-level insertion/modi-
fication between the two datasets. On Codeflaws, we find the
the number of sub-statement-level insertion and modification is
3, 692 over 3, 902 buggy-fixed program pairs (about 94 percent

of fixing is sub-statement level) while this ratio is slightly
decreased to 4, 863 over 6, 171 buggy-fixed program pairs of
Prutor (only 78 percent of fixing is sub-statement level).

Overall, experiment results demonstrate that node-level rep-
resentation and loss function help FFL better capture finer
granularity of syntactic transformations and improve the per-
formance in general.

Answers to RQ4: Representation and loss function at
node level is empirically better than any combinations
of those at statement level and contributed to the sig-
nificantly better results of our approach in comparison
with the best baselines.

V. DISCUSSION

A. FFL performance on cases where almost all test fails

Since FFL does not require a correct implementation at
runtime and instead uses pass/fail and coverage information
in conjunction with the source code, we believe it would give
further insight to FFL’s applicability to evaluate the method’s
performance in the cases of which the program fails almost
completely (i.e., where most of the test fails). Towards this
assessment, we first collect the programs matching the criteria
(i.e., the ratio of failing tests is over 90%) in the Codeflaws
and Prutor dataset. The result is that there are no programs
provided Codeflaws [33] dataset that meets this specification
(i.e., most of the program would fail only 1-2 test cases over
the total of 30-40 test cases) and a total of 36 programs
matches the criteria in the Prutor [5]. The performance of the
trained FFL on these program are top-1: 8.82%, top-3: 26.4%,
top-5: 50% and top-10: 88.2% respectively. This hint that FFL
might experience a performance drop in cases lacking positive
coverage information associated with the source code, the



TABLE IV: Overall performance of FFL with statement-level and node-level training objective. Baseline shows best results
of our baseline. Statement and Node shows the results of statement-level and node-level training objective, respectively. The
bold numbers denote the best result for each metric.

Dataset Metrics Baseline Statement Loss Statement Loss Node Loss
+ Node-level AST + Statement-level AST + Node-level AST

Codeflaws

top-1 10.4 (Ochiai) 23.5 22.4 31
top-3 22.6 (Dstar) 42.7 41.6 46.2
top-5 39.6 (Ochiai) 56.4 53.2 67.6
top-10 68.2 (Ochiai) 73.5 73.1 83.1

Prutor

top-1 27 (Dstar) 28.0 27.3 29.6
top-3 44.1 (NBL) 52.5 50.9 51.6
top-5 58.8 (Dstar) 65.4 64.7 67.6
top-10 78.6 (Dstar) 84.6 86.7 84.6

comparable top-10 recall might be due to the relatively smaller
number of statements in these provided programs (21.805 lines
of code on average) in comparison with the average 25 lines
on the full dataset [5].

B. Threats to validity

Threats to internal validity refer to possible errors in our
implementation and experiments. To mitigate this risk, we
have carefully checked our implementation to the best of our
abilities. Moreover, we also use externally created datasets:
Codeflaws and Prutors. Since these datasets are created by
others, it reduces experimenter bias.
Threats to external validity correspond to the generalizability
of our findings. We have evaluated our approach on 2,916 real-
world student program from 2 well-known programming tu-
toring system: Codeflaws and Prutor. These evaluation dataset
only includes C programs. In the future, we plan to further
mitigate this threat by evaluating FFL on more bugs from other
programming systems in various programming languages.
Threats to construct validity relate to the suitability of our
evaluation metrics. To mitigate this threat, we make use of top-
n (n ∈ {1, 3, 5, 10}), which is widely used in prior works in the
field of fault localization [3], [14], [20], [21], [23] following
findings by Parnin and Orso [29] which recommend the use of
absolute ranks rather than percentages of program inspected.

VI. CONCLUSION AND FUTURE WORK

Providing feedback on student-written programs is an in-
tegral part of the programming tutoring system for program-
ming. However, this task is tedious, error-prone, and time-
consuming and requires a lot of effort from the teaching
personnel [12]. Recent studies [9] have shown that fault
localization is useful in providing feedback for students.
Unfortunately, existing fault localization techniques for student
programs are limited because they usually consider either
the program’s syntax or semantics alone. This motivates the
new design of fault localization techniques that can utilize
both syntactic and semantic information of programs. In this
paper, we introduce FFL (Fine-grained Fault Localization),
a novel technique using syntactic and semantic reasoning
for localizing bugs in student program. To realize FFL, we
first propose a novel program representation (that combines

AST and program spectra), followed by a graph-based deep
learning model and trained using a novel training objective.
Our evaluation on 2,916 real-world student programs from
two well-known programming tutoring systems has shown that
FFL successfully localizes at least one bug for more than 83%
programs when reporting the top-10 suspicious lines. FFL also
remarkably outperforms the best baselines 197%, 144%, 70%,
22% on Codeflaws dataset and 26%, 17%, 22% and 38%
on Prutor dataset, in term of top-1, top-3, top-5, top-10. The
results hint that FFL’s better performance benefited from the
combination of the graph-based representation, i.e., syntax-
coverage graph, in conjunction with the graph neural network
and finally, fine-grained training objective based on node-level
AST differencing while FFL execution time is empirically
evaluated to be within a reasonable performance, hinting its
practicality. Overall, the evaluations indicate that our approach
may provide useful feedback for students about the root cause
of the failures that they encounter.

In future work, we plan to improve FFL by extending the
training datasets, incorporating student programsfrom other
programming tutoring systems such as Hackerrank [16] or
LeetCode [19] in addition to Prutor [5] and Codeforces [25].
Moreover, even though our trained model has achieved decent
performance without the tuning of models’ hyper-parameters
(e.g., number of layers, hidden-dimensions, etc.), additional
effort in selections of the hyper-parameters or leveraging graph
neural networks oriented techniques [28], [43] may further im-
prove task performance, model robustness and explainability.
Additionally, we plan to extend FFL to localize bugs from
other programming languages and in challenging scenarios
such as the discussed case where the majority of test cases
fails. Finally, we plan to extend this work for automated
program repair. Specifically, it will be interesting to see if
our graph-based representation and deep learning model can
be adapted to the generative modeling of patches
Dataset and Tool Release. FFL’s dataset and implementation
are publicly available at https://github.com/FFL2022/FFL.
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