
LEGION: Harnessing Pre-trained Language Models for GitHub
Topic Recommendations with Distribution-Balance Loss

Yen-Trang Dang
trang.dy190114@sis.hust.edu.vn
Hanoi University of Science and

Technology
Hanoi, Vietnam

Thanh Le-Cong
congthanh.le@student.unimelb.edu.au

The University of Melbourne
Melbourne, Australia

Phuc-Thanh Nguyen
thanh.np200594@sis.hust.edu.vn
Hanoi University of Science and

Technology, Vietnam
Hanoi, Vietnam

Anh M. T. Bui∗
anhbtm@soict.hust.edu.vn

Hanoi University of Science and
Technology, Vietnam

Hanoi, Vietnam

Phuong T. Nguyen
phuong.nguyen@univaq.it

Università degli studi dell’Aquila
67100 L’Aquila, Italy

Bach Le
bach.le@unimelb.edu.au

The University of Melbourne
Melbourne, Australia

Quyet-Thang Huynh
thanghq@soict.hust.edu.vn

Hanoi University of Science and
Technology

Hanoi, Vietnam

Abstract
Open-source development has revolutionized the software industry by
promoting collaboration, transparency, and community-driven innovation.
Today, a vast amount of various kinds of open-source software, which form
networks of repositories, is often hosted on GitHub – a popular software
development platform. To enhance the discoverability of the repository
networks, i.e., groups of similar repositories, GitHub introduced repository
topics in 2017 that enable users to more easily explore relevant projects by
type, technology, and more. It is thus crucial to accurately assign topics for
each GitHub repository. Current methods for automatic topic recommenda-
tion rely heavily on TF-IDF for encoding textual data, presenting challenges
in understanding semantic nuances.

This paper addresses the limitations of existing techniques by proposing
Legion, a novel approach that leverages Pre-trained Language Models
(PTMs) for recommending topics for GitHub repositories. The key novelty
of Legion is three-fold. First, Legion leverages the extensive capabilities
of PTMs in language understanding to capture contextual information and
semantic meaning in GitHub repositories. Second, Legion overcomes the
challenge of long-tailed distribution, which results in a bias toward popular
topics in PTMs, by proposing a Distribution-Balanced Loss (DB Loss) to
better train the PTMs. Third, Legion employs a filter to eliminate vague
recommendations, thereby improving the precision of PTMs. Our empirical
evaluation on a benchmark dataset of real-world GitHub repositories shows
that Legion can improve vanilla PTMs by up to 26% on recommending
GitHubs topics. Legion also can suggest GitHub topics more precisely and

∗Anh M. T. Bui is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2024, 18–21 June, 2024, Salerno, Italy
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/XXXXXXX.XXXXXXX

effectively than the state-of-the-art baseline with an average improvement
of 20% and 5% in terms of Precision and F1-score, respectively.

CCS Concepts
• Software and its engineering→ Software libraries and repositories;
• Computing methodologies → Machine learning.

ACM Reference Format:
Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui,
Phuong T. Nguyen, Bach Le, and Quyet-Thang Huynh. 2024. LEGION: Har-
nessing Pre-trained Language Models for GitHub Topic Recommendations
with Distribution-Balance Loss. In Proceedings of The 28th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE 2024).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Open-source development has fundamentally transformed the landscape
of the software industry, championing principles of collaboration, trans-
parency, and community-driven innovation. The imperative for developers
to engage in exploration, sharing, and collaboration within the realm of
open-source software (OSS) highlights the significance of a dedicated plat-
form. Among the existing platforms, GitHub stands out as the foremost
choice for hosting Git repositories, establishing itself as a cornerstone in
the open-source ecosystem. This platform serves as a centralized hub where
developers can seamlessly host, review, and manage their code reposito-
ries [7, 38, 46]. To foster discoverability and contribution to related projects,
GitHub introduced tags – a pivotal feature in 2017 – allowing developers to
tag repositories with relevant topics [13].

Topics convey salient descriptions of a repository, providing insights
into various aspects such as the project’s goals, evolving features, and
technical details encompassing libraries and frameworks employed [42, 53].
Assigning the right topics to a GitHub repository is crucial for enhancing
its discoverability among developers. It serves as a bridge between the
social and technical aspects of repositories, potentially attracting interested
users [44, 45, 51, 56]. On the contrary, an inaccurate assignment of topics
compromises the usefulness of the GitHub topics and hinders the seamless
recommendation of repositories to potential users.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2024, 18–21 June, 2024, Salerno, Italy Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui, Phuong T. Nguyen, Bach Le, andQuyet-Thang Huynh

Table 1: F1-score of well-known Pretrained Language Models
on Top-1 prediction for “Head,” “Mid,” and “Tail” labels.

Head Mid Tail
BERT 0.409 0.08 0.00

ELECTRA 0.358 0.00 0.00

To tackle these issues, GitHub introduced Repo-Topix, an information
retrieval-based recommender system to suggest suitable topics for each
GitHub repository [14]. Following this, new techniques [11, 12, 23, 53] have
been proposed to automatically recommend topics for GitHub repositories,
leveraging textual data such as README files and descriptions. These ap-
proaches model the topic recommendation problem as either multi-class
or multi-label classification, employing machine learning models to clas-
sify suitable topics for GitHub repositories based on labeled data. More
specifically, previous studies encode the textual data of a GitHub repository
into numerical vectors using TF-IDF and then employ classification mod-
els such as Logistic Regression [23], Multinomial Naïve Bayesian [12] or
ZestXML [53] to assign relevant topics to the repository.

While current techniques demonstrate encouraging performance, there
are aspects that need improvements. Specifically, existing methods mainly
depend on TF-IDF for representing the textual data of GitHub repositories.
While TF-IDF can capture the statistics of common terms in the textual data,
it inherently lacks the ability to capture contextual information or semantic
meaning of words. This limitation poses a challenge in understanding the
underlying semantics of textual data (Challenge C1) for accurately
tagging repositories. To tackle this challenge, a potential solution is to har-
ness Pre-trained Language Models (PTMs), which demonstrated remarkable
language understanding capabilities due to their effective training on vast
amounts of textual data.

However, employing PTMs for GitHub Topic Recommendation proves
to be non-trivial. Izadi et al. [23] discovered that DistillBERT [41] is less
effective than TF-IDF + LR [23]. We replicated their experiments with
four well-known PTMs and found that these models are also less accurate
compared to state-of-the-art techniques such as TF-IDF + LR [23] and TF-
IDF + ZestXML [53], thus confirming Izadi et al.’s findings. In an in-depth
analysis, we attribute this phenomenon to the long-tailed distribution
of GitHub topics (Challenge C2), in which a small proportion of topics
is associated with a vast number of repositories, while a large number of
other topics are assigned to very few repositories [59]. Consequently, PTMs
exhibit a bias toward popular topics, preferring highly frequent labels to
rare but correct/useful labels. Indeed, in our initial experiments (Table 1),
while PTMs perform well in head (i.e., most frequent) topics (appearing
in at least 30 repositories) with F1-score around 0.4, their effectiveness
significantly drops to nearly zero on the mid and tail topics, i.e., topics with
frequencies ranging from 30 to 9 and falling below 9. Consequently, we
found that these PTMs perform worse than state-of-the-art baselines on
recommending GitHub topics (see Section 5.1).

To address the aforementioned issues, we introduce Legion (LanguagE
Models for GItHub TOpic RecommendatioN), an approach that effectively
fine-tunes PTMs inGitHub Topic recommendationwithDistribution-Balanced
Loss (DB Loss) [55]. DB Loss tackles long-tailed distribution in multi-label
classification problems by integrating re-sampling, re-balanced weight-
ing, and negative tolerant regularization. In particular, it first employs
class-aware sampling which samples training examples such that different
class has a similar amount of training examples in each epoch. Then, it
leverages re-balanced weights to reduce redundant information of label
co-occurrence, caused by re-sampling. Finally, it reduces the bias from “easy-
to-classify” negative instances by explicitly assigning lower weight to them.
Additionally, during the inference stage, we introduce a filter to eliminate

low-confident recommendations, thereby enhancing the precision of pre-
dictions. In summary, the benefit of Legion is three-fold. First, leveraging
PTMs allows Legion to extract the underlying semantics of textual data
in GitHub repositories, addressing Challenge C1. Second, DB Loss allows
Legion to handle popularity bias caused by the long-tailed distribution of
GitHub topics, thereby addressing Challenge C2. Third, the low-confident
filter enhances the precision of Legion.

We evaluated Legion on a dataset of 15,262 repositories crawled from
GitHub with 665 unique labels. Evaluation results showed that Legion
can improve vanilla PTMs by up to 26% on recommending GitHub topics.
Legion also can suggest GitHub topics more precisely and effectively than
state-of-the-art topics with an average improvement of 20% and 5% in terms
of Precision and F1-score, respectively.
Contributions. In summary, we make the following contributions:

• Investigation. We empirically investigate the impact of long-tailed
distribution of GitHub topics on Pre-trained LanguageModels (PTM).
Our experimental results reveal the lack of effectiveness of PTMs
fine-tuned with commonly-used Binary Cross Entropy Loss on low
frequency GitHub topics with nearly zero F1-scores.

• Solution. We introduce Legion, a novel recommendation tech-
nique that leverages PTM for suggesting relevant topics for GitHub
repositories based on their textual data. Our proposed solution in-
corporates a Distribution-Balanced Loss and a Low-Confident Filter
for effective training and precise inference of PTMs.

• Evaluation. We empirically evaluate the performance of Legion
and its effectiveness in enhancing PTMs. Our experiments also show
that Legion can significantly improve PTMs, outperforming the best
baseline by 20% and 5% over in terms of Precision and F1-score.

Data Availability. To support the open science initiative, we publish a
replication package including our dataset and trained models [8]. +We also
provide an open-source implementation of Legion at

https://github.com/RISE-BKAI/LEGION/

2 BACKGROUND AND RELATEDWORK
This section introduces a brief overview of the background and related
works. First, we present recent studies on the problem of topic recommen-
dation for GitHub repositories. Subsequently, we delve into Large Language
Models (LLMs) and their applications for Software Engineering Tasks.

2.1 Topic Recommendation for GitHub
Repositories

GitHub topic recommendation is related to suggesting relevant topics to
repositories on GitHub. In this section, we first recall state-of-the-art tech-
niques for this topic, and then introduce our problem formulation.

2.1.1 State-of-the-arts. Recent approaches in GitHub topic recommenda-
tion falls into two main categories.
Probability-based Recommendation: Recommenders based on proba-
bility [10–12], formulate this problem as multi-class classification and then
employ algorithms, such as Multinomial Naïve Bayesian [12] to output
probability that indicate how likely a topic belong to GitHub repository.
Particularly, given these probabilities, these techniques rank topics to offer
recommendations. In this work, we exclude probability-based techniques
such as MNBN [12] as they have been proven to be less effective than the
multi-label-based approaches described below.
Multi-label Classification: In contrast to the aforementioned approaches,
Izadi et al. [23] recently formalized the GitHub repository topic recom-
mendation task as a multi-label classification problem [19]. They conducted
empirical studies exploring various combinations of (1) document repre-
sentation and (2) multi-label classification. Their experiments highlighted

https://github.com/RISE-BKAI/LEGION/

LEGION: Harnessing Pre-trained Language Models for GitHub Topic Recommendations with Distribution-Balance Loss EASE 2024, 18–21 June, 2024, Salerno, Italy

Textual
DataLabelled

GitHub
Repository

Pre-trained
Language
Models

Finetuning

Distribution-Balanced Loss

Re-balanced
Weighting

Negative-Tolerant
Regularization

New GitHub
Repository

Textual
Data

Finetuned
Model

Low-Confident
Filter

Relevant
Topics

Inference

Figure 1: Overall workflow of Legion.

Logistic Regression with TF-IDF embeddings as the superior combination
for topic recommendation, outperforming probability-based recommen-
dation approaches [23]. Widyasari et al. [53] further explores this direc-
tion by considering user-defined topics, formulating this problem as an
extreme multi-label classification problem. Then, they conducted an explo-
ration study to examine the effectiveness of XML techniques and found that
ZestXML [17] is the best-performing approach in suggesting GitHub topics.

2.1.2 Problem Formulation. In this work, we focus on GitHub featured
topics, which are carefully designed and maintained by GitHub and its
community, following Izadi et al. [23] as user-defined GitHub topics may be
noisy and of low quality. However, as rare topics may be still correct and
important, we follow Widyasari [53] to not remove them. This allows us to
ensure both the quality of our dataset and the reliability of the recommen-
dation systems produced in this study. As a result, we obtained a dataset of
665 unique topics (see Section 4.2). We formulate our task as a multi-label
classification problem, which takes as input a set of Github’s featured topics
T and a new (unlabelled) Github repository G and outputs a set of labels
T=4F ⊆ T as topics of G.

2.2 Pre-trained Language Models for Software
Engineering Tasks

Pre-trained Language Models (PTMs) [6, 9, 27, 63] become popular in many
domains including Natural Language Processing and Software Engineering
thanks to their remarkable capabilities. These models are commonly built
based on a Transformer architecture [47] and trained on a massive amount
of data, allowing them to learn and capture both the syntax and semantics
of human language. Given these capabilities, PTMs showed excellent perfor-
mance in extracting semantic features from textual data and great promise
to be fine-tuned for tasks that they were not initially trained for [20, 36].

Inspired by these successes, PTMs have been widely adopted in Soft-
ware Engineering tasks such as code generation [2, 31, 52], program analy-
sis [4, 21, 24], and program understanding/reasoning [1, 25, 48, 60]. Among
these tasks, the applications of PTMs for Natural Language-based Software
Engineering (NLBSE) tasks are most closely to our study. Zhang et al. [58]
investigated the capabilities of PTMs on sentiment analysis for Software
Engineering. He et al. [18] showed the potential of PTMs for recommending
tags in Stack Overflow posts. Wang et al. [49] proposed the use of PTMs
for labeling GitHub issues. Messaoud [35] applied PTMs for detecting du-
plicated bug reports. PTMs have been also applied to various other NLBSE
tasks such as requirement classification [32], README simplication [15],
Software Q&A [57]. Different from these works, our work delves into the
problem of GitHub Topic Recommendation. We also investigate challenges,
e.g., long-tailed distributions for applying PTMs on this task, and propose
effective mechanisms for handling these challenges.

3 PROPOSED SOLUTION
Figure 1 illustrates the overall workflow of Legion in both the fine-tuning
and inference phases. First, in the fine-tuning phase, we fine-tune Pre-
trained Models such as BERT [9] and RoBERTa [63] on labeled GitHub
repositories (see the considered PTMs in Section 3.4). These PTMs are
fine-tuned using Distribution-Balanced Loss (see Section 3.2) to obtain the
optimized models. Next, in the inference phase, these PTMs can be used
to recommend topics for new GitHub repositories. Finally, to ensure the
precision of suggested topics, we also use a filter to prune low-confident
predictions (see details in Section 3.3).

3.1 Data Pre-processing

3.1.1 Textual Data. Regarding textual data, we follow prior works [23, 53]
to construct the data from related documents including README files and
descriptions. We also perform several cleaning steps including removing
alphanumeric characters following Widyasari et al. [53]. The details of the
cleaning step can be found in their replication package.1

3.1.2 Topics. Regarding GitHub topics, the manual creation of most topic
tags, many of them carry spelling mistakes or ambiguous meanings that
render them unusable. Therefore, to ensure the quality of our dataset, we
focus on GitHub’s featured topics, which are carefully designed and main-
tained by GitHub and its community. The full list of such topics, as well as
their alias, can be found on GitHub’s explore repository.2 We removed all
labels that do not appear in the aforementioned list, and further augment
the data by converting alias labels to their corresponding featured label.
Note that, different from Izadi et al. [23], after filtering out non-featured
topics from [53], we also did not omit any low-frequency topics. As a result,
we observe a phenomenon of long-tail distribution even among featured
topics, with up to 33.6% of topics appearing less than 4 times.

3.2 Distribution-Balanced Loss
Binary Cross Entropy (BCE) is a standard and commonly-used loss function
for finetuning Pre-trained Language Models in prior works [18, 24, 30, 58].
Unfortunately, our experimental results show that BCE has a negative
impact on the performance of PTMs, especially in less frequent GitHub
topics (see details in Section 5.1). Therefore, we propose to use Distribution-
Balanced Loss (DBLoss) [55] for effectively finetuning PTMs. DBLoss con-
sists of three components: (1) Re-sampling, (2) Re-Balanced Weighting, and
(3) Negative-Tolerant Regularization. These components are described in
detail as follows.

3.2.1 Re-sampling. For fine-tuning a deep learning model in a supervision
manner, it is necessary to sample examples from training data. The most
common approach is to select these examples randomly with equal probabil-
ity. However, to deal with the imbalance nature of long-tailed distribution,
DBLoss leverages a popular strategy, namely class-aware sampling [43].
More specifically, it first uniformly selects a class from the entire set of
classes, i.e., topics, and subsequently randomly picks an example from the
chosen class. This process iterates throughout each training epoch with
pre-defined number of times for each class visited. Typically, the number
is defined as the maximum number of training example for a class. More
formally,

#4 = max(=1, . . . , =�) (1)
where, #4 is the number of times for each class visited in an epoch 4 ,
� = | T | is the number of classes, i.e., featured topics, and =8 is the number
of examples for class 8 . In case of significant imbalance, #4 can be reduced
to control the data scale within one epoch.

1https://figshare.com/s/dc6d69629442c6ac3bbb
2https://github.com/github/explore

EASE 2024, 18–21 June, 2024, Salerno, Italy Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui, Phuong T. Nguyen, Bach Le, andQuyet-Thang Huynh

3.2.2 Re-balanced Weighting. While re-sampling can partially mitigate the
impact of imbalance in long-tailed distribution, prior work [55] shows that
it can induce inner-class imbalance and may even exaggerate the inter-class
imbalance. Therefore, DBLoss leverages a re-balanced weighting strategy
based on the expectation of Class-level sampling frequency %�

8
and Instance-

level sampling frequency % � (G:) (: is an instance) to mitigate the extra
imbalance caused by re-sampling. Particularly, it first estimates the expec-
tation of these sampling frequencies as follows:

%�8 =
1
�

1
=8

(2)

% �
(
G:

)
=

1
�

∑
~:
8
=1

1
=8

(3)

where G: is an instance,i.e., a training example, ~:
8
∈ {0, 1} denotes if

sample : belong to class 8 or not, � = | T | is the number of classes, i.e.,
featured topics, =8 is the number of examples for class 8 .

Then, DBLoss defines a re-balancing weight A:
8

for an instance G: as
follows:

A:8 =

%�
8

(
G:

)
% �

(
G:

) (4)

This weight allows DBLoss to close the gap between expected sampling
times and actual sampling times during the training stage, thus reducing
the imbalance issue. Finally, to make the optimization process stable, it uses
a smoothing function for mapping the weight to the expected value ranges.
Particularly, the smoothed weight is calculated by:

Â:8 = U + 1

1 + exp
(
−V ×

(
A:
8
− `

)) (5)

Given this weight, DBLoss defines Re-balanced Binary Cross Entropy Loss,
which will be used together with Negative-Tolerant Regularization to form
the final loss as follows:

L'−���

(
G: , ~:

)
=

1
�

∑�
8=0

[
~:
8
log

(
1 + 4−I

:
8

)
+
(
1 − ~:

8

)
log

(
1 + 4I

:
8

)]
×Â:

8

(6)

where (G: , ~:) is an training example, I: denotes the output of a classifier
and Â:

8
is the smoothed re-balanced weight calculate by Equation 5.

3.2.3 Negative-Tolerant Regularization. Next, the domination of negative
classes in multi-label classification may introduce the problem of over-
suppression, in which deep learningmodels trained by Binary Cross Entropy
loss tend to be biased by negative classes. Particularly, less frequent classes,
i.e., topics, could have limited positive samples and a huge number of nega-
tive ones, making them tend to provide lower output probability and thus,
a negative prediction. To address this issue, DBLoss aims to provide a sharp
drop in the loss created by negative prediction once it is optimized to be
lower than a certain threshold. This allows DBLoss to avoid the suppression
from these predictions. Particularly, it uses a Negative-Tolerant Regulariza-
tion, which employs a non-zero bias initialization to serve as thresholds,
followed by the linear scaling to the negative logits. More formally, the
regularization is calculated by:

L#) −���

(
G: , ~:

)
=

1
�

∑�
8=0 ~

:
8
log

(
1 + 4

−
(
I:
8
−a8

))
+ 1
_

(
1 − ~:

8

)
log

(
1 + 4

_

(
I:
8
−a8

)) (7)

where (G: , ~:) is an training example, I: denotes the output of a classifier,
a8 is a class-specific bias, and _ denotes the scale factor that control the
regularization.

3.2.4 Final Loss. Finally, these aforementioned components are integrated
into the final Distribution-Balanced Loss as follows:

L��

(
G: , ~:

)
=

1
�

∑�
8=0 Â

:
8

[
~:
8
log

(
1 + 4

−
(
I:
8
−a8

))
+ 1
_

(
1 − ~:

8

)
log

(
1 + 4

_

(
I:
8
−a8

))] (8)

3.3 Filtering Low-Confident Recommendations
In GitHub Topic Recommendation techniques, it is a common approach to
suggest a set of top-k predictions for users. However, we have observed that
these techniques may not always exhibit confidence in their predictions, as
indicated by low output probabilities. This lack of confidence can adversely
affect the precision of the systems. In a recommendation system, high
precision is crucial, as imprecise recommendations (false positives) can
reduce the trust of users [5, 26, 40].

To address this issue, we propose a filter to eliminate low-confidence
predictions from the set of top-k predictions. In other words, we advocate
for a refinement process that considers the reliability of each prediction.
Formally, the output predictions of a model can be defined as follows:

O = {? ∈ O>A868=

:
| P (?) ≥ g } (9)

where, O>A868=

:
represents a set of k predictions generated by a model,

P(?) denotes the output probability associated with a particular prediction,
and g serves as a filtering threshold. We consider g to be a hyper-parameter,
which will be tuned in a validation set to obtain optimal value.

3.4 Pre-trained Language Models

Theoretically, Legion’s methodology including Distribution-Balanced
Loss and Low-Confident Filter can be applied for fine-tuning and inference
of any Pre-trained Language Models. However, given resource constraints,
our work focuses on four well-known PTMs including BERT [9], BART [27],
RoBERTa [63], and ELECTRA [6]. This section recalls these models in detail.

3.4.1 BERT. (Bidirectional Encoder Representations from Transformers) is
a languagemodel developed by Google. It utilizes a bidirectional architecture
to understand the context of words by considering both left and right
surrounding words simultaneously.Themodel’s training procedure includes
two steps: pre-training and fine-tuning. It was pre-trained on a diverse range
of datasets, a combination of the BookCorpus [62] plus English Wikipedia,
with two objectives: Masked language modeling (MLM) and Next sentence
prediction (NSP). In this study, we focus on the original base model of BERT
with 110 millions of parameters.

3.4.2 BART. is a denoising autoencoder built with a sequence-to-sequence
model developed by Facebook. It is a transformer encoder-decoder with
a bidirectional (BERT [9]-like) encoder and an auto-regressive (GPT [39]-
like) decoder. BART is pre-trained by corrupting text with an arbitrary
noising function and learning a model to reconstruct the original text. The
architecture is closely related to that used in BERT, with some differences,
and in total, it contains roughly 10% more parameters than the equivalently
sized BERT model.

3.4.3 RoBERTa. (Robustly optimized BERT approach) an improved recipe
for training BERT [9] model, that can match or exceed the performance of
all of the post-BERT methods. RoBERTa is trained with dynamic masking,
full sentences without NSP loss, large mini-batches, and a larger byte-level
BPE. The dataset for training includes five English-language corpora of

LEGION: Harnessing Pre-trained Language Models for GitHub Topic Recommendations with Distribution-Balance Loss EASE 2024, 18–21 June, 2024, Salerno, Italy

Table 2: Detailed statistics of “Head,” “Mid,” and “Tail” labels.

Head Mid Tail Total
Labels 208 215 242 665

Repositories 14,667 3,354 545 15,262

varying sizes and domains including English Wikipedia, OpenWebText,3
BookCorpus [62], and CC-News [34].

3.4.4 ELECTRA. is a new method for self-supervised language representa-
tion learning with little amount of computation. Its models are trained to
distinguish “real” input tokens vs. “fake” input tokens generated by another
neural network, similar to the discriminator of a GAN [16]. ELECTRA in-
cludes two neural networks called a generator and a discriminator. Despite
the similar structure to GAN, the generator, a small masked language model,
is trained with maximum likelihood rather than adversarially. After pre-
training, the generator is thrown out and the discriminator is fine-tuned on
downstream tasks.

4 EMPIRICAL SETTINGS
4.1 ResearchQuestions
Our empirical evaluation aims to answer the following research questions:
RQ1: What is the impact of the long-tailed distribution of GitHub topics
on Pre-trained Language Models? This research question pertains to the
impact of the long-tailed distribution on the effectiveness of Pre-trained
Language Models (PTMs) in recommending GitHub topics. Particularly,
we evaluate four well-known PTMs including BERT [9], RoBERTa [63],
BART [27], and ELECTRA [6] and compare their effectiveness with a state-
of-the-art baseline, namely ZestXML [53] and LR [23]. To assess the models’
performance across labels with varying frequencies, we adopt the approach
proposed by Huang et al. [22] and Zhou et al. [61] to partition the labels
into roughly equal subsets, namely head,mid, and tail.Head labels denote
the most frequently occurring ones, tail labels represent the least frequent,
and mid labels encompass the remaining ones. Detailed statistics of these
labels are presented in Table 2.
RQ2: Is Legion effective in improving Pre-trained Language Models on GitHub
Topic Recommendation? In this question, we investigate the impact of em-
ploying Legion to enhance the performance of distinct Pre-trained Lan-
guage Models. Going into more detail, we apply our methodology to four
aforementioned PTMs (i.e., BERT [9], RoBERTa [63], BART [27] and ELEC-
TRA [6]) and compare their effectiveness to the original models, which is
fine-tuned following a standard loss, i.e., Binary Cross-Entropy [50].
RQ3: How effective is Legion compared to state-of-the-art baselines on rec-
ommending GitHub topics? This research question delves into assessing the
capability of Legion to recommend relevant topics for GitHub repositories.
We conduct experiments on a dataset comprising 15,262 GitHub repositories,
which was previously assembled by Widyasari et al. [53] (see Section 4.2)
in terms of Precision, Recall and F1-Score (see Section 4.3). We compare our
proposed approach against two baseline methods including TF-IDF+LR [23]
and TF-IDF+ZestXML [53] (see Section 4.4).
RQ4: Which components of Legion contribute to its effectiveness? To miti-
gate the impact of long-tailed distribution on Pre-trained Language Mod-
els, Legion uses two mechanisms, i.e., Distribution Loss for training and
Low-Confident Filter for inference. This research question investigates the
contribution of each mechanism in an ablation study by dropping them one
by one and observing the change in Legion ’s performance.

3https://github.com/jcpeterson/openwebtext

Table 3: Training, validation, and testing datasets.

Dataset # GitHub Repositories # Unique Topics
Training 11,282 638
Validation 1,000 363
Testing 2,980 507

4.2 Dataset
We started with data provided by a prior work [53], which has already been
split into train and test sets of 17,018 and 4,225 repositories, respectively.
As stated in Section 3.1, to ensure the quality of our dataset, we focus on
GitHub’s featured topics.The result is a dataset with total 15,262 repositories
and 665 unique labels. We extract randomly 1,000 repositories from the
training data to create a validation set. The dataset now contains 11,282
training, 2,980 testing and 1,000 validation repositories. The statistics of our
training and testing datasets are shown in Table 3.

4.3 Evaluation Metrics
The experiments aim to evaluate the effectiveness of our proposed approach
and state-of-the-art baselines in GitHub topic recommendation using three
evaluation metrics, i.e., Precision@K, Recall@K, and F1-score@K, which
have been widely utilized for the same purpose [33, 53]. Particularly, given
the top-K predictions for a repository, all metrics are calculated globally
based on the total count of true positives, false negatives, false positives
defined as follows:

• True Positives (TP): a topic is suggested to a repository by a rec-
ommender, and it is an actual topic of the repository.

• False Positives (FP): a topic is suggested to a repository by a
recommender, but it does not belong to the repository.

• True Negatives (FP): a topic is not suggested to a repository by a
recommender, and it does not belong to the repository.

• False Negatives (TP): a topic is not suggested to a repository by a
recommender, but it is an actual topic of the repository.

Precision measures how precise/accurate the suggested topics are. It is
calculated by the ratio of true topics (true positives) over the total number

of predictions, i.e., % =
)%

)% + �%
.

Recallmeasure how complete are suggested topics. It is calculated by the
ratio of true topics suggested (true positives) by a recommendation system

over the total number of actual topics. ' =
)%

)% + �#
.

F1-score is a harmonic mean of the precision and recall, seeking the

balance between these metrics, i.e., �1 =
2 × (% × ')

% + '
. In this work, we

leverage Micro-F1 [29, 54], which takes label imbalance into account.

4.4 Baselines
To evaluate the effectiveness of Legion, we compare our approach with
the following baselines:

• TF-IDF + LR [23]: After removing all labels with occurrences count
smaller than 100, this method formulates the Github topic recom-
mendation problem as a multi-label classification task. Textual in-
puts, including repositories’s README and description, are encoded
into TF-IDF vectors then passed through a Logistic Regression clas-
sifier. As part of the same study, a DistilBERT classifier was con-
structed but fell short compared to the TF-IDF+LR model. In our
experiments, we refer to this approach as LR.

• TF-IDF + ZestXML [53]: This study emphasizes the importance of
having a diverse label space, including rare and emerging topics, and
thus, did not remove any low-frequency labels. Similar to the above
approach, repositories’ README and descriptions are preprocessed

https://github.com/jcpeterson/openwebtext

EASE 2024, 18–21 June, 2024, Salerno, Italy Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui, Phuong T. Nguyen, Bach Le, andQuyet-Thang Huynh

Table 4: Effectiveness of PTMs, including BERT, BART, RoBERTa, and ELECTRA, compared to state-of-the-art baselines on
different parts of GitHub topics’ distribution.

Model Head Mid Tail All Avg F1F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5
BERT 0.409 0.505 0.504 0.081 0.166 0.180 0.0 0.0 0.0 0.374 0.474 0.475 0.441
BART 0.416 0.514 0.511 0.049 0.142 0.158 0.0 0.0 0.0 0.378 0.480 0.480 0.446
RoBERTa 0.366 0.441 0.445 0.0 0.0 0.0 0.0 0.0 0.0 0.329 0.405 0.410 0.381
ELECTRA 0.358 0.426 0.421 0.0 0.014 0.020 0.0 0.0 0.0 0.322 0.392 0.389 0.368
ZestXML 0.398 0.469 0.418 0.235 0.444 0.430 0.169 0.291 0.257 0.379 0.465 0.416 0.420
LR 0.417 0.524 0.443 0.181 0.362 0.463 0.028 0.028 0.028 0.388 0.507 0.500 0.465

and encoded into TF-IDF vectors. These vectors are classified using
a Zero-shot XML algorithm called ZestXML. In our experiments, we
refer to this approach as ZestXML.

• Finetuned PTMs + BCE: Pretrained Language Models have been
proven to be useful in numerous tasks that require universal lan-
guage understanding. Such PTMs can be adapted for the text clas-
sification tasks via the addition a fully-connected layer to produce
output probability [22].

• Finetuned PTMs + Focal Loss: In addition to fine-tuning Pre-
trained Models (PTMs) using Binary Cross Entropy (BCE) Loss, we
also incorporate Focal Loss [28] for fine-tuning. Focal Loss is a recog-
nized loss function designed for imbalanced data. This loss strategy
emphasizes training on a selective set of challenging examples and
mitigate the impact of numerous easy negatives by assigning explicit
weight to BCE Loss. In our experiments, we refer to this approach
as FL.

4.5 Implementation Details
The AutoModelForSequenceClassification backbone4 in transformers li-
brary was used to fine-tune our PTMs. The parameters for BERT [9] were
initialized using the bert-base-uncased pretrained model. For RoBERTa
[63], BART [27], and ELECTRA [6], the parameteres were initialized from
roberta-base, bart-base, and electra-base-discriminator models. All of the
above models can be found on HuggingFace.5 Among them, bert-based-
uncased and electra-base-discriminator follow the base BERT architecture
with 110M parameters, while bart-base and roberta-base have 139M and
125M parameters respectively. The PTMs are fine-tuned using one Tesla
V100 GPU which takes between 6 to 10 minutes for one epoch. The input
sequences are truncated or padded to a maximum length of 512 and batched
with batch size 32. The optimizer is AdamW with a weight decay of 0.01.
The default learning rate for BCE models is 1e-5, but for models using DB
loss the learning rate is 1e-4. Others parameters of both BCE and DB loss
functions follow existing work [22, 55]. All the experiments were carried
out with PyTorch. For the older baselines, TF-IDF+LR and ZestXML+LR, we
reused the original preprocessing, training and inference code [53]. During
the evaluation, we acquired the top-k predictions on test set, and calcu-
late precision score, recall score, and micro F1 score using scikit-learn’s
functions [37].

5 EMPIRICAL RESULTS
This section reports and analyzes the experimental results by answering
the research questions introduced in Section 4.1.

4https://huggingface.co/transformers/v3.0.2/model_doc/auto.html
5https://huggingface.co/models

5.1 RQ1: What is the impact of the long-tailed
distribution of GitHub topics on Pre-trained
Language Models?

To investigate the impact of long-tailed distribution of GitHub topics, we
evaluate the effectiveness of different PTMs, including BERT [9], RoBERTa [63],
BART [27] and ELECTRA [6] on head, mid and tail labels. The experimental
results are shown in Table 4.

Overall, PTMs show good performance when predicting head (i.e., most
frequent) labels. However, a remarkable decline in performance becomes
apparent when tasked with predicting mid and tail labels, characterized by
lower frequencies. Specifically, all PTMs consistently achieve an F1-score
within the range of 0.3 to 0.5 for head labels, whereas this performance drops
to under 0.18 for mid subsets, even under the most optimistic scenarios.
Notably, all of the PTMs considered in our study could not predict correctly
any tail labels, i.e., all the corresponding F@1, F@3, and F@5 scores are
equal to 0. This may be attributed to potential overfitting on head labels and
the lack of training data on the less frequent labels.

The results show that PTMs perform much worse compared to state-of-
the-art baselines, even on the head labels. Particularly, the best baseline,
i.e., LR, outperforms PTMs in F@1 and F@3 for head labels, with PTMs
only surpassing the baselines in F@5. The leading PTM, BERT-base, falls
short when compared to both ZestXML (showing an average performance
decrease of around 62% in F@1, F@3, and F@5) and LR (demonstrating an
average decrease of 57% in F@1, F@3, and F@5). As a result, in full data,
though showing comparable performance with ZestXML, PTMs consistently
perform worse than LR in F@1, F@3, and F@5 by 4-26% on average.

These findings diverge from our initial assumptions regarding the seman-
tic understanding capabilities of PTMs, possibly attributing to the imbalance
in training data and the shortage of data in less frequent labels, stemming
from the long-tailed distribution of GitHub topics. This distribution poses
challenges for models when learning our specific tasks and introduces a
popularity bias in PTMs. These observations highlight the necessity for new
approaches to address the impact of long-tailed distributions for effectively
applying PTMs on this task.

Answer to RQ1: The long-tailed distribution of GitHub topics significantly
affects the performance of Pre-trained Language Models, with nearly zero
performance on less frequent topics. This leads to suboptimal performance
for PTMs when compared to state-of-the-art techniques.

5.2 RQ2: Is Legion effective in improving
Pre-trained Language Models on GitHub
Topic Recommendation?

In this experiment, we investigate the effectiveness of Legion on enhancing
Pretrained LanguageModels (PTMs) on GitHub Topic Recommendation.The
detailed results are shown in Table 5. Overall, we can see that Legion can

https://huggingface.co/transformers/v3.0.2/model_doc/auto.html

LEGION: Harnessing Pre-trained Language Models for GitHub Topic Recommendations with Distribution-Balance Loss EASE 2024, 18–21 June, 2024, Salerno, Italy

Table 5: Effectiveness of Legion on improving PTMs, on different parts of topics’ distribution. BERT! , RoBERTa! , BART! ,
ELECTRA! are the performance of improved version of BERT, BART, RoBERTa, and ELECTRA with Legion, respectively.

Model Head Mid Tail All Avg F1F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5
BERT 0.409 0.505 0.504 0.081 0.166 0.180 0.0 0.0 0.0 0.374 0.474 0.475 0.441
BERT! 0.432 0.532 0.535 0.363 0.467 0.474 0.051 0.063 0.079 0.421 0.521 0.525 0.489
Improvement ↑5.6% ↑5.3% ↑6.2% ↑348% ↑181% ↑165% ↑ N/A ↑ N/A ↑ N/A ↑12.6% ↑9.9% ↑10.5% ↑10.9%
BART 0.416 0.514 0.511 0.049 0.142 0.158 0.0 0.0 0.0 0.378 0.480 0.480 0.446
BART! 0.431 0.533 0.540 0.315 0.458 0.466 0.050 0.096 0.126 0.414 0.521 0.529 0.488
Improvement ↑3.6% ↑3.7% ↑5.7% ↑543% ↑222% 294% ↑ N/A ↑ N/A ↑ N/A ↑9.5% 8.5% ↑10.2% ↑9.4%
RoBERTa 0.366 0.441 0.445 0.0 0.0 0.0 0.0 0.0 0.0 0.329 0.405 0.410 0.381
RoBERTa! 0.430 0.527 0.530 0.310 0.425 0.435 0.045 0.045 0.045 0.412 0.513 0.517 0.481
Improvement ↑17.5% ↑19.5% ↑19.1% ↑ N/A ↑ N/A ↑ N/A ↑ N/A ↑ N/A ↑ N/A ↑25.2% ↑26.7% ↑26.1% ↑26.0%
ELECTRA 0.358 0.426 0.421 0 0.014 0.020 0.0 0.0 0.0 0.322 0.392 0.389 0.368
ELECTRA! 0.375 0.440 0.437 0.205 0.266 0.267 0.017 0.032 0.032 0.354 0.419 0.417 0.397
Improvement ↑4.7% ↑3.3% ↑3.8% ↑ N/A ↑1,900% ↑1,335% ↑ N/A ↑ N/A ↑ N/A ↑9.9% ↑6.9% ↑7.2% ↑7.9%

substantially improve the performance of all PTMs by 7.9%, 9.4%, 10.9%, and
26% in terms of average F1-score on ELECTRA, BART, BERT, and RoBERTa,
respectively. More specifically, the refined PTMs incorporating Legion
exhibit notable improvements over their original counterparts, ranging
from 9.9% to 25.2%, 6.9% to 26.7%, and 7.2% to 26.1% in top-1, top-3, and
top-5 predictions, respectively.

These improvements stem from the enhanced performance of PTMs on
different subsets of labels including head, mid, and tail labels. Specifically,
for head labels, Legion yields substantial improvements in the prediction
quality (reflected by F1-score) of BERT, BART, ELECTRA, and RoBERTa,
ranging from 5.3% to 6.2%, 3.6% to 5.7%, 3.3% to 4.7%, and 17.5% to 19.5%,
respectively. For mid-frequency labels, Legion showcases its ability by aid-
ing PTMs in achieving an F1-score of approximately 0.4, translating to an
improvement of at least 2.5 times. Notably, the Legion can improve the F1-
score of RoBERTa and ELECTRA from nearly zero to a noteworthy range of
0.205 to 0.435. Furthermore, concerning tail labels, where the initial perfor-
mance of PTMs is zero, the enhanced version of PTMs with Legion exhibits
an F1-score of up to 0.126. Although the performance remains modest, this
improvement is noteworthy and encouraging, especially considering the
subpar performance observed previously.

The experimental results demonstrate the effectiveness of Legion in
improving PTMs, especially in mid frequent labels. These findings highlight
the usefulness of Legion in mitigating the impact of the long-tailed distri-
bution of GitHub topics on PTMs. Despite notable improvements, PTMs
exhibit suboptimal performance on tail distribution. Legion, while effective,
may not fully address this challenge alone, revealing its limitations. To
overcome this, a plausible strategy is to employ Legion in conjunction with
other techniques that excel in handling tail labels, such as ZestXML. We
show that this synergistic approach can enhance overall performance and
provide a more comprehensive solution, as explained in Section 6.1.

Answer to RQ2: Legion can significantly improve the performance of
Pre-trained Language Models on recommending GitHub topics with im-
provements ranging from 7.9% to 26.0% in terms of F1.

5.3 RQ3: How effective is Legion compared to
state-of-the-art baselines on recommending
GitHub topics?

To investigate the effectiveness of our approach, we compare Legion
with two state-of-the-art baselines including ZestXML [53] and LR [23].
The results obtained by the baselines and Legion are shown in Table 6.
Overall, Legion outperforms both state-of-the-art baselines. Specifically,

Legion, achieves an F1-score of 0.489, a 5.2% and 16.4% increase over LR
and ZestXML respectively. Our approach also consistently improves the
best baseline by 8.5%, 2.8%, and 5.0% in top-1, top-3 and top-5 predictions,
respectively.

Table 6: Effectiveness of our model compared to baselines in
terms of Precision, Recall, and F1-score at top-k predictions
with k from 1 to 5.

Model ZestXML LR FL LEGION Improvement
P 0.649 0.688 0.665 0.744 ↑8.1%

Top-1 R 0.268 0.271 0.274 0.293 ↑6.9%
F 0.379 0.388 0.388 0.421 ↑8.5%
P 0.420 0.506 0.541 0.616 ↑22.7%

Top-3 R 0.520 0.507 0.453 0.451 ↓13.3%
F1 0.465 0.507 0.493 0.521 ↑2.8%
P 0.308 0.440 0.523 0.600 ↑36.4%

Top-5 R 0.637 0.577 0.472 0.467 ↓26.7%
F 0.416 0.500 0.497 0.525 ↑5.0%
P 0.459 0.545 0.576 0.653 ↑20.0%

Avg R 0.475 0.452 0.400 0.404 ↓15.0%
F1 0.420 0.465 0.459 0.489 ↑5.2%

We observed that these improvements stem from the remarkable en-
hancement of Legion’s precision with an average increase of 20%. More
specifically, our approach improves the most precise baseline by 8.1%, 22.7%,
and 36.4% in top-1, top-3, and top-5 predictions, respectively. Regarding Re-
call, Legion only outperforms state-of-the-art baseline in top-1 prediction
with an increase of 6.9% while performing worse than them in Top-3 and
Top-5 predictions by 13.3% and 26.7%. This can be attributed to the design of
our method, which leverages a Low-Confident Filter to ensure the precision
of the models. The design restricts the Legion’s prediction, resulting in the
lower Recall. Without the filter, as seen in Table 8, Legion will produce
higher Recall with an increase of 17.7% and 34.3%, achieving comparable
(and even better) performance with ZestXML and LR. However, the preci-
sion score is crucial as an imprecise recommendation, e.g., false positives,
could lose the trust of users [5, 26, 40] and thus, is more important than
Recall. Therefore, we believe that the filter is necessary for our approach.

Next, to understand how Legion and the baselines deal with long-tailed
distortion of GitHub topics, we also conduct an in-depth analysis of their
performance in the three subsets: head, mid, and tail topics. Table 7 presents
the detailed results of this analysis. Overall, Legion is the best-performing

EASE 2024, 18–21 June, 2024, Salerno, Italy Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui, Phuong T. Nguyen, Bach Le, andQuyet-Thang Huynh

Table 7: Effectiveness of Legion compared to state-of-the-art baselines on different parts of GitHub topics’ distribution.

Model Head Mid Tail All Avg F1F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5 F@1 F@3 F@5
ZestXML 0.398 0.469 0.418 0.235 0.444 0.430 0.169 0.291 0.257 0.379 0.465 0.416 0.420
LR 0.417 0.524 0.443 0.181 0.362 0.463 0.028 0.028 0.028 0.388 0.507 0.500 0.465
Legion 0.432 0.532 0.535 0.363 0.467 0.474 0.051 0.063 0.079 0.421 0.521 0.525 0.489
Improvement ↑3.6% ↑1.5% ↑20.7% ↑100.1% ↑29.0% ↑2.4% ↓30.2% ↓21.6% ↓30.7% ↑8.5% ↑2.8% ↑5.0% ↑5.2%

approach on the head and mid topics. Particularly, our approach shows
improvements of up to 20.8% and 100.1% (in terms of F1-score) over the
best baseline in head and mid labels, respectively. However, Legion falls
short of ZestXML in tail labels with a decrease of 21.6% - 30.7% in terms of
F1-score. This is within our expectation as ZestXML is a zero-shot learning
algorithm, which is designed specifically for rare and unseen label prediction.
These results unveil the possibility of combining Legion and ZestXML for
better GitHub topic recommendation techniques. We discuss this possible
combination and its challenge in Section 6.1.

Answer to RQ3: Legion is effective in recommending GitHub topics,
enhancing the state-of-the-art baseline by an average of 5.2% in F1. This
improvement stems from more precise predictions, with a notable 20.0%
enhancement in precision.

5.4 RQ4: Which components of Legion
contribute to its effectiveness?

In this research question, we perform an ablation study to analyze the
components that account for the gain in performance. Table 8 depicts the
obtained results from the corresponding experiments. LegionF/>!>BB and
LegionF/>�8;C4A denote variants of Legion without Distribution-Balanced
Loss (BDLoss) and Low-Confident Filter, respectively.

Table 8: Ablation Study. LegionF/>!>BB and LegionF/>�8;C4A
denotes variants of Legion without DBLoss and Low-
Confident Filtering, respectively.

Model LEGION LEGIONF/>!>BB LEGIONF/>�8;C4A
P 0.744 0.673(↓9.5%) 0.717 (↓3.6%)

Top-1 R 0.293 0.259 (↓11.6%) 0.297 (↑1.4%)
F1 0.421 0.374 (↓11.2%) 0.420 (↓0.2%)
P 0.616 0.546 (↓11.4%) 0.428 (↓30.5%)

Top-3 R 0.451 0.418 (↓7.3%) 0.531 (↑17.7%)
F1 0.521 0.474 (↓9.0%) 0.474 (↓9.0%)
P 0.600 0.526 (↓12.3%) 0.303 (↓49.5%)

Top-5 R 0.467 0.432 (↓7.5%) 0.627 (↑34.3%)
F1 0.525 0.474 (↓9.7%) 0.408 (↓22.3%)
P 0.653 0.582 (↓11.0%) 0.483 (↓26.1%)

Average R 0.404 0.370 (↓8.4%) 0.485 (↑20.1%)
F1 0.489 0.441 (↓9.9%) 0.434 (↓11.2%)

We can see that, without BDLoss, Legion witnessed a consistent de-
crease in terms of Precision, Recall, and F1-score. Particularly, in terms of
Precision, LegionF/>!>BB show a drop of 9.5%, 11.4% and 12.3% in top-1,
top-3 and top-5 predictions, respectively, resulting a decrease of 11% on
average. Meanwhile, the Recall of LegionF/>!>BB is reduced by 8.4% on
average over Legion, with a decrease of 11.6%, 7.3% and 7.5% in top-1, top-3
and top-5 predictions, respectively. As a results, LegionF/>!>BB is less ef-
fective (in terms of F1-score) than original version by 9.9% with the decrease
from 9.0% to 11.2% in different number of predictions.

We also can observe the similar trends in Precision and F1-score of
LegionF/>�8;C4A . Particularly, when the low-confident filter is left out,
Legion witnessed a 26.1% decrease in average precision than Legion while
observing a drop of 11.2% in terms of F1-score. However, we can see that
Legion has better recall without this filter, boosting the metrics between
1.4% to 34.3%. These results show that the filter may remove some low-
confident yet correct predictions. As discussed in Secion 5.3, we believe
that the precision of a recommendation is crucial so the filter is necessary
for our approach. Nevertheless, this could be considered as a limitation of
Legion, we encourage future research to address this limitation by ensuring
the high confidence for correct predictions.

Overall, our experimental results demonstrate that removing either com-
ponent from Legion causes a worse overall quality of predictions, reflected
by the F1-score. This suggests that both DBLoss and Low-Confident Filter
are important for Legion to perform effectively. We also suggest future
works to further improve the confident score of correct predictions for
avoiding the losing in Recall by Low-Confident Filter.

Answer to RQ4: All components of Legion contribute positively to its
performance. Without Distribution-Balanced Loss and Low-Confident
Filter, the performance of Legion decreases by 9.9% and 11.2%.

6 DISCUSSION
In this section, we discuss the possibility of a fusion between Legion and
ZestXML for better prediction. Afterward, we present the threats to the
validity of our study.

6.1 Synergy of Legion and existing techniques
As discussed in Section 5.2 and 5.3, we found that Legion excels in head
and mid labels but performs worse than ZestXML in tail labels, which rarely
happened. In this section, we discuss the possibility of a combined approach
of Legion and existing approach for better GitHub topic recommendation.
Particularly, we design a combined approach by combining top-3 predic-
tions from ZestXML and top-5 predictions from Legion for the final top-8
predictions. The rationale behind this design is: (1) we observe that Legion
and ZestXML show the optimal effectiveness on top-5 and top-3 predictions,
respectively, and (2) we avoid bias on tail labels, which rarely happens
and may harm performance. Table 9 illustrates the effectiveness of the
synergistic approach compared to Legion and ZestXML.

Table 9: The effectiveness (F1-score) of combined approach
of ZestXML and Legion.

ZestXML Legion Combined approach
Head 0.340 0.536 0.532
Mid 0.341 0.473 0.489
Tail 0.193 0.079 0.267
All 0.337 0.525 0.526

Overall, we can see that the combined approach outperforms ZestXML
and Legion in mid and tail labels and only shows a slight decrease in

LEGION: Harnessing Pre-trained Language Models for GitHub Topic Recommendations with Distribution-Balance Loss EASE 2024, 18–21 June, 2024, Salerno, Italy

performance in head labels. Consequently, the approach shows the best
performance in whole labels. While the improvement is marginal, we can
see that this combined approach is more reliable than ZestXML and Legion
as it offers consistent performance over different subsets of labels. We
encourage future works to explore this direction for better GitHub topic
recommendation techniques.

6.2 Threats to Validity
6.2.1 Internal Validity. This threat refers to possible flaws in our experi-
ments and implementations. We have carefully checked the correctness of
our implementation. We also published our source code along with trained
models [8] and presented detailed hyper-parameters for the training of
considered models in Section 4.5. Given these materials, other research
can validate our results and findings. Therefore, we believe that there are
minimal threats from this issue.

6.2.2 Construct Validity. This threat concerns the suitability of our evalu-
ation. A source of these threats may stem from our evaluation metric. To
minimize this threat, we employ well-known metrics, which are commonly
used by prior studies [11, 23, 33, 53] for multi-label classification, including
Precision, Recall, and F1-score.

6.2.3 External Validity This threat relates to the generalizability of our find-
ings. Our experiments are conducted on the same dataset as prior work [53],
crawled from GitHub. This raises a concern about the external validity of
our findings as they may not generalize beyond GitHub repositories outside
our dataset. However, we believe this threat is minimal as the dataset is
exhaustively crawled from GitHub and consists of a large number of data
points, which ensure their diversity. Another potential threats to our exter-
nal validity is our selection of Pre-trained Language Models (PTMs), which
may raise a risk that our finding may not generalize beyond these PTMs.
Due to resources constraints, we remark this as our limitation and leave the
further investigations for future work.

7 CONCLUSION AND FUTUREWORK
In this work, we addressed the challenges in GitHub topic recommendation,
particularly focusing on the limitations of existing methods that heavily
rely on TF-IDF for representing textual data and the negative impact of long-
tailed distribution of topics. Our investigation revealed the ineffectiveness
of Pre-trained Language Models (PTMs) in handling the long-tailed distri-
bution of GH topics. To overcome these challenges, we proposed Legion
as a novel approach that fine-tunes PTMs with Distribution-Balanced Loss
to mitigate popularity bias caused by long-tailed distribution. Moreover,
to ensure the precision of Legion, we also propose a Low-Confident Filter
to eliminate imprecise predictions. The evaluation showed that Legion
significantly improved PTMs by up to 26% in recommending GH topics.
Our experiments also demonstrate the effectiveness of Legion, achieving
higher precision and F1-score than state-of-the-art baselines.

In the future, we plan to extend Legion vertically and horizontally. Firstly,
we plan to further improve our empirical evaluation. Particularly, we aim
to explore (1) the impact of more PTMs and their architectures on GH topic
recommendations and (2) measure the effectiveness of our approach and
existing techniques in a more comprehensive setting with more evaluation
metrics such as MCC [3] and larger dataset for providing more insights
about our study. Moreover, as README is only a small part of a GitHub
repository, we also want to add more additional context such as source code,
filename or description/topics of relevant projects for enhancing textual
inputs. Additionally, we also aim to investigate the generalization of Legion
to other collaborative platforms beyond GitHub such as GitLab or Bitbucket.
Lastly, we want to explore the integration of user feedback and interactions
to refine Legion that could enhance the user experience.

Acknowledgment
This research is funded by Hanoi University of Science and Technology
(HUST) under project number T2023-PC-002.

References
[1] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for

project-specific code-summarization. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering. 1–5.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[3] Davide Chicco, Matthijs J Warrens, and Giuseppe Jurman. 2021. The Matthews
correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier
score in binary classification assessment. Ieee Access 9 (2021), 78368–78381.

[4] Yiu Wai Chow, Max Schäfer, and Michael Pradel. 2023. Beware of the unexpected:
Bimodal taint analysis. arXiv preprint arXiv:2301.10545 (2023).

[5] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 332–343.

[6] Kevin Clark, Thang Luong, Quoc V. Le, and Christopher Manning. 2020. ELEC-
TRA: Pre-training Text Encoders as Discriminators Rather Than Generators. In
ICLR. https://openreview.net/pdf?id=r1xMH1BtvB

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
1277–1286.

[8] Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui,
Phuong T. Nguyen, Bach Le, and Quyet-Thang Huynh. 2023. Artifacts: LE-
GION: Harnessing Pre-trained Language Models for GitHub Topic Recom-
mendations with Distribution-Balance Loss. Figshare. https://figshare.com/
s/6e01956fbfcd9b7ca6de

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL.

[10] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, and Riccardo
Rubei. 2020. Topfilter: an approach to recommend relevant github topics. In
Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–11.

[11] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong TNguyen, and Riccardo
Rubei. 2022. HybridRec: A recommender system for tagging GitHub repositories.
Applied Intelligence (2022), 1–23.

[12] Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Phuong T Nguyen.
2020. A multinomial naïve bayesian (mnb) network to automatically recommend
topics for github repositories. In Proceedings of the Evaluation and Assessment in
Software Engineering. 71–80.

[13] Shay Frendt. 2019. Introducing topics. https://github.blog/2017-01-31-
introducing-topics/

[14] Kavita Ganesan. 2017. Topic suggestions for millions of repositories. https:
//github.blog/2017-07-31-topics/

[15] Haoyu Gao, Christoph Treude, and Mansooreh Zahedi. 2023. Evaluating Transfer
Learning for Simplifying GitHub READMEs. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1548–1560.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[17] Nilesh Gupta, Sakina Bohra, Yashoteja Prabhu, Saurabh Purohit, and Manik
Varma. 2021. Generalized Zero-Shot ExtremeMulti-Label Learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(Virtual Event, Singapore) (KDD ’21). Association for Computing Machinery,
New York, NY, USA, 527–535. https://doi.org/10.1145/3447548.3467426

[18] Junda He, Bowen Xu, Zhou Yang, DongGyun Han, Chengran Yang, and David Lo.
2022. PTM4Tag: sharpening tag recommendation of stack overflow posts with
pre-trained models. In Proceedings of the 30th IEEE/ACM International Conference
on Program Comprehension. 1–11.

[19] Francisco Herrera, Francisco Charte, Antonio J Rivera, and María J del Jesus.
2016. Multilabel classification. In Multilabel Classification. Springer, 17–31.

[20] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large language models for soft-
ware engineering: A systematic literature review. arXiv preprint arXiv:2308.10620
(2023).

[21] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming Zhu, and
Qinghua Lu. 2022. Prompt-tuned code language model as a neural knowledge
base for type inference in statically-typed partial code. In Proceedings of the 37th

https://openreview.net/pdf?id=r1xMH1BtvB
https://figshare.com/s/6e01956fbfcd9b7ca6de
https://figshare.com/s/6e01956fbfcd9b7ca6de
https://github.blog/2017-01-31-introducing-topics/
https://github.blog/2017-01-31-introducing-topics/
https://github.blog/2017-07-31-topics/
https://github.blog/2017-07-31-topics/
https://doi.org/10.1145/3447548.3467426

EASE 2024, 18–21 June, 2024, Salerno, Italy Yen-Trang Dang, Thanh Le-Cong, Phuc-Thanh Nguyen, Anh M. T. Bui, Phuong T. Nguyen, Bach Le, andQuyet-Thang Huynh

IEEE/ACM International Conference on Automated Software Engineering. 1–13.
[22] Yi Huang, Buse Giledereli, Abdullatif Köksal, Arzucan Ozgur, and Elif Ozkirimli.

2021. Balancing Methods for Multi-label Text Classification with Long-Tailed
Class Distribution. 8153–8161. https://doi.org/10.18653/v1/2021.emnlp-main.643

[23] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recom-
mendation for software repositories using multi-label classification algorithms.
Empirical Software Engineering 26, 5 (2021), 1–33. https://doi.org/10.1007/s10664-
021-09976-2

[24] Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Hary-
ono, David Lo, Xuan-Bach D Le, and Quyet Thang Huynh. 2022. AutoPruner:
transformer-based call graph pruning. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 520–532.

[25] Thanh Le-Cong, Duc-Minh Luong, Xuan Bach D Le, David Lo, Nhat-Hoa Tran,
Bui Quang-Huy, and Quyet-Thang Huynh. 2023. Invalidator: Automated patch
correctness assessment via semantic and syntactic reasoning. IEEE Transactions
on Software Engineering (2023).

[26] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and
E James Whitehead. 2013. Does bug prediction support human developers? find-
ings from a google case study. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 372–381.

[27] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[29] Zachary Chase Lipton, Charles Elkan, and Balakrishnan Narayanaswamy. 2014.
Thresholding Classifiers to Maximize F1 Score. arXiv:1402.1892 [stat.ML]

[30] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-
trained language model for code completion. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 473–485.

[31] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li
Li, Xuan-Bach D Le, and David Lo. 2023. Refining ChatGPT-generated code:
Characterizing and mitigating code quality issues. arXiv preprint arXiv:2307.12596
(2023).

[32] Xianchang Luo, Yinxing Xue, Zhenchang Xing, and Jiamou Sun. 2022. PRCBERT:
Prompt Learning for Requirement Classification using BERT-based Pretrained
Language Models. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering. 1–13.

[33] Yunbo Lyu, Thanh Le-Cong, Hong Jin Kang, Ratnadira Widyasari, Zhipeng Zhao,
Xuan-Bach D. Le, Ming Li, and David Lo. 2023. Chronos: Time-Aware Zero-
Shot Identification of Libraries from Vulnerability Reports. (2023), 1033–1045.
https://doi.org/10.1109/ICSE48619.2023.00094

[34] Joel Mackenzie, Rodger Benham, Matthias Petri, Johanne R Trippas, J Shane
Culpepper, and Alistair Moffat. 2020. CC-News-En: A large English news cor-
pus. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 3077–3084.

[35] Montassar Ben Messaoud, Asma Miladi, Ilyes Jenhani, Mohamed Wiem Mkaouer,
and Lobna Ghadhab. 2022. Duplicate bug report detection using an attention-
based neural language model. IEEE Transactions on Reliability (2022).

[36] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. 2023. Recent
advances in natural language processing via large pre-trained language models:
A survey. Comput. Surveys 56, 2 (2023), 1–40.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[38] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and
Bogdan Vasilescu. 2019. Going farther together: The impact of social capital
on sustained participation in open source. In 2019 ieee/acm 41st International
Conference on Eoftware Engineering (ICSE). IEEE, 688–699.

[39] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[40] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at google. Commun.
ACM 61, 4 (2018), 58–66.

[41] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[42] Abhishek Sharma, Ferdian Thung, Pavneet Singh Kochhar, Agus Sulistya, and
David Lo. 2017. Cataloging github repositories. In Proceedings of the 21st In-
ternational Conference on Evaluation and Assessment in Software Engineering.
314–319.

[43] Li Shen, Zhouchen Lin, and Qingming Huang. 2016. Relay backpropagation for
effective learning of deep convolutional neural networks. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part VII 14. Springer, 467–482.

[44] Christoph Treude and Margaret-Anne Storey. 2009. How tagging helps bridge
the gap between social and technical aspects in software development. In 2009
IEEE 31st International Conference on Software Engineering. IEEE, 12–22. https:
//doi.org/10.1109/ICSE.2009.5070504

[45] Christoph Treude and Margaret-Anne Storey. 2010. Work item tagging: Commu-
nicating concerns in collaborative software development. IEEE Transactions on
Software Engineering 38, 1 (2010), 19–34.

[46] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In Proceedings of the 36th
International Conference on Software engineering (ICSE). 356–366.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[48] Deze Wang, Zhouyang Jia, Shanshan Li, Yue Yu, Yun Xiong, Wei Dong, and
Xiangke Liao. 2022. Bridging pre-trained models and downstream tasks for
source code understanding. In Proceedings of the 44th International Conference on
Software Engineering. 287–298.

[49] Jun Wang, Xiaofang Zhang, and Lin Chen. 2021. How well do pre-trained contex-
tual language representations recommend labels for GitHub issues? Knowledge-
Based Systems 232 (2021), 107476.

[50] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. 2022. A Comprehensive Survey
of Loss Functions in Machine Learning. Annals of Data Science 9, 2 (April 2022),
187–212. https://doi.org/10.1007/s40745-020-00253-

[51] Shaowei Wang, David Lo, Bogdan Vasilescu, and Alexander Serebrenik. 2018.
EnTagRec++: An enhanced tag recommendation system for software information
sites. Empirical Software Engineering 23, 2 (2018), 800–832.

[52] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[53] Ratnadira Widyasari, Zhipeng Zhao, Thanh Le Cong, Hong Jin Kang, and David
Lo. 2023. Topic Recommendation for GitHub Repositories: How Far Can Extreme
Multi-Label Learning Go?. In 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 167–178.

[54] Jiawei Wu, Wenhan Xiong, and William Yang Wang. 2019. Learning to Learn
and Predict: A Meta-Learning Approach for Multi-Label Classification. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(Eds.). Association for Computational Linguistics, Hong Kong, China, 4354–4364.
https://doi.org/10.18653/v1/D19-1444

[55] TongWu, Qingqiu Huang, Ziwei Liu, YuWang, and Dahua Lin. 2020. Distribution-
balanced loss for multi-label classification in long-tailed datasets. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IV 16. Springer, 162–178.

[56] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. 2013. Tag recommendation in
software information sites. In 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE, 287–296.

[57] Bowen Xu, Thanh-Dat Nguyen, Thanh Le-Cong, Thong Hoang, Jiakun Liu, Kisub
Kim, Chen Gong, Changan Niu, Chenyu Wang, Bach Le, et al. 2023. Are We
Ready to Embrace Generative AI for Software Q&A?. In 2023 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 1713–1717.

[58] Ting Zhang, Bowen Xu, Ferdian Thung, Stefanus Agus Haryono, David Lo, and
Lingxiao Jiang. 2020. Sentiment analysis for software engineering: How far can
pre-trained transformer models go?. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 70–80.

[59] Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo.
2023. The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large
Language Models. arXiv preprint arXiv:2309.03567 (2023).

[60] Xin Zhou, Bowen Xu, Kisub Kim, DongGyun Han, Thanh Le-Cong, Junda He,
Bach Le, and David Lo. 2023. Patchzero: Zero-shot automatic patch correctness
assessment. arXiv preprint arXiv:2303.00202 (2023).

[61] Xin Zhout, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo.
2023. The Devil is in the Tails: How Long-Tailed Code Distributions Impact Large
Language Models. In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 40–52.

[62] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19–27.

[63] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A Robustly Optimized BERT
Pre-training Approach with Post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics. 1218–1227.

https://doi.org/10.18653/v1/2021.emnlp-main.643
https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.1007/s10664-021-09976-2
https://arxiv.org/abs/1402.1892
https://doi.org/10.1109/ICSE48619.2023.00094
https://doi.org/10.1109/ICSE.2009.5070504
https://doi.org/10.1109/ICSE.2009.5070504
https://doi.org/10.1007/s40745-020-00253-
https://doi.org/10.18653/v1/D19-1444

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 Topic Recommendation for GitHub Repositories
	2.2 Pre-trained Language Models for Software Engineering Tasks

	3 PROPOSED SOLUTION
	3.1 Data Pre-processing
	3.2 Distribution-Balanced Loss
	3.3 Filtering Low-Confident Recommendations
	3.4 Pre-trained Language Models

	4 EMPIRICAL SETTINGS
	4.1 Research Questions
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Baselines
	4.5 Implementation Details

	5 EMPIRICAL RESULTS
	5.1 RQ1: What is the impact of the long-tailed distribution of GitHub topics on Pre-trained Language Models?
	5.2 RQ2: Is Legion effective in improving Pre-trained Language Models on GitHub Topic Recommendation?
	5.3 RQ3: How effective is Legion compared to state-of-the-art baselines on recommending GitHub topics?
	5.4 RQ4: Which components of Legion contribute to its effectiveness?

	6 DISCUSSION
	6.1 Synergy of Legion and existing techniques
	6.2 Threats to Validity

	7 CONCLUSION AND FUTURE WORK
	References

