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Memory-Efficient Large Language Models for Program Repair
with Semantic-Guided Patch Generation

Anonymous Author(s)

ABSTRACT
Fixing software bugs is crucial yet demands significant resources
from developers. Automated Program Repair (APR) is a promising
solution to address this challenging task. The emergence of Large
Language Models (LLMs) has opened a new era of LLM-based APR,
substantially advancing the APR field further. LLM-based APR
methods face significant challenges regarding memory inefficiency,
hindering their scalability and effectiveness. This is largely due to
the beam search utilized in the patch generation phase of LLM-
based APR, which requires large beam sizes to search for more
potentially good repair candidates.

In this paper, we first show that increases in beam size, even for
small-sized LLMs (1B-7B params), require extensive GPU usage,
leading to up to 80% of recurring crashes due to memory overloads
in LLM-based APR. Seemingly simple solutions to reduce memory
consumption are (1) to quantize LLM models, i.e., converting the
weights of an LLM from high-precision values to lower-precision
ones, and (2) to make beam search sequential, i.e., forwarding each
beam through the model sequentially and then concatenating them
back into a single output. However, we show that these approaches
still do not work via both theoretical analysis and experiments.

To address this, we introduce FLAMES, a novel LLM-based APR
technique that employs semantic-guided patch generation to en-
hance repair effectiveness and memory efficiency. Unlike conven-
tional methods that rely on beam search, FLAMES utilizes greedy
decoding to enhance memory efficiency while steering the search
towards more potentially good repair candidates via a semantic-
guided best-first search algorithm. At each decoding step, FLAMES
uses semantic feedback from test validation, such as the number of
passing and failing test cases, to select the most promising token to
explore further. Our empirical evaluation on Defects4J shows that
FLAMES substantially reduces memory consumption by up to 83%
compared to LLM-based APRwithout compromising time efficiency.
Moreover, FLAMES correctly fixes 133 bugs on Defects4J, fixing
10 bugs more than the best baseline. Additionally, these improve-
ments also generalize to the HumanEval-Java and TransformedD4J
datasets, where FLAMES generates 12% and 36.5% more correct
patches, respectively, than the best baseline.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware testing and debugging.
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1 INTRODUCTION

Fixing software bugs is a complex and time-consuming task for
developers [66]. Automated Program Repair (APR) [17, 19] has
emerged as a promising solution to alleviate this burden by au-
tomatically repairing bugs. Over the past two decades, APR has
seen significant advancements [9, 18, 35, 37, 40, 43, 72, 77, 86], with
practical applications in the software industry [4, 32, 46, 67].

Recently, the surge of Large LanguageModels (LLMs), pre-trained
on vast datasets, has further advanced APR, opening a new era of
LLM-based APR [22, 57, 69]. LLM-based APR typically adapts mod-
els for APR either through fine-tuning on APR-specific datasets [20,
22, 53, 57, 81, 88] or by using prompting with commercial mod-
els [5, 80]. In this study, we focus on fine-tuning approaches, as
prompting often relies on closed-source and commercial models
like ChatGPT, which lack transparency, hindering reproducibility
in open science and raising data privacy concerns.

Fine-tuning-based approaches typically refine the weights of
Code LLMs by fine-tuning these models on APR datasets. During
inference, they generate token sequences to construct candidate
patches, prioritizing sequences with high probability scores from
the fine-tuned model. Traditionally, beam search, a widely used
search algorithm from natural language processing [59], is used to
optimize this process by maintaining only the top-= nodes at each
decoding step, where = is the beam size. A larger beam size provides
a more precise approximation to exact decoding, i.e., thoroughly
exploring all possible sequences, thereby enhancing the quality of
the outputs. This hyperparameter is even more important in the
context of APR, which covers a broader range of possible identifiers
and a larger search space than natural language [9, 24, 45]. It has
been shown that a substantial beam size is essential for generating
adequate candidate patches for optimal results [24, 45, 85], and a
larger beam size leads to higher performance of APR techniques
that are based on small-sized deep learning models (less than 300M
parameters) [62, 78, 85].

But, is it true that increasing the beam size is all we need to improve
the performance of APR? We revisit the impact of beam size on the
effectiveness of LLM-based APR techniques on larger models (1B-
7B parameters). Our findings reveal that increasing the beam size
boosts the effectiveness of these techniques, but once the beam
size reaches a threshold, the performance drops significantly due
to memory overloads that cause recurring crashes even on state-
of-the-art hardware (NVIDIA A100 GPU, equipped with 80 GB of
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VRAM). For instance, state-of-the-art LLM-based APR techniques
generated between 21% and 46% more plausible patches when the
beam size was increased from 10 to 25. Ideally, we expect that
further increasing the beam size would lead to better performance
of the models for APR. However, when the beam size is set higher
at 50, 100, and 200, our experiments reveal that the performance of
these models drops significantly.

Our experiments uncover that the above phenomenon is due
to extensive GPU resource consumption, particularly on Video
Random Access Memory (VRAM), caused by larger beam sizes.
Often, upgrading VRAM to accommodate larger beam sizes requires
GPU upgrades, which are expensive; thus, this creates a costly trade-
off between memory efficiency and the performance of LLM-based
APRs. For instance, achieving a 46% performance improvement
with InCoder-1B required 58% more average and 111% more peak
VRAM usage on our dataset. Consequently, further performance
gains through increasing beam size demand substantial VRAM,
often leading to out-of-memory (OOM) crashes even on cutting-
edge hardware and thereby unduly reducing the effectiveness of
LLM-based APR techniques. Our experiments using the NVIDIA
A100 GPU, equipped with 80 GB of VRAM, showed that InCoder-6B
crashed on nearly 80% of the evaluated bugs when using a beam size
of 200. This resulted in a 60% reduction in performance compared to
a beam size of 10. In summary, we conclude that simply increasing
the beam size is not a solution, as it comes at the cost of chasing
after state-of-the-art hardware.

A seemingly straightforward approach to this problem is to
reduce the memory usage of LLM-based APR through engineering
efforts. This can be achieved using two common strategies: (1)
quantizing LLM models by converting their weights from high-
precision to lower-precision values, and (2) making beam search
sequential, where each beam is processed individually through the
model before being combined into a single output. However, our
findings show that while these methods can reduce memory usage,
their memory demands still escalate significantly as beam size
increases, leading to substantially high out-of-memory (OOM) rates.
Consequently, these engineering efforts alone cannot solve the
problem.This realizationmotivates us to develop a patch generation
algorithm that can effectively enhance the performance of LLM-
based APR techniques without relying on increasing the beam size
and compromising memory efficiency.

In this paper, we introduce FLAMES, a memory-efficient LLM-
based APR technique using semantic-guided patch generation. Un-
like conventional methods that rely solely on a language model’s
knowledge and beam search, our approach aims to leverage seman-
tic feedback from test validations to guide LLMs in patch generation.
The core idea of FLAMES is to combine LLM-based and search-based
APR. This process begins with generating initial patches using
greedy decoding, i.e., beam search with a beam size of 1, followed
by iterative, semantic-guided searches to refine these solutions. To
achieve this, we employ a best-first search algorithm, specifically
PG-TD [83], along with semantic feedback from test validations
to guide the patch generation of LLMs. This approach offers three
key advantages: (1) reduced VRAM consumption through greedy
decoding, improving memory efficiency; (2) scalability without in-
creasing VRAM usage while generating more candidate patches;

and (3) seamless information exchange between patch generation
and validation, enabling efficient exploration of plausible patches.

We conducted an empirical evaluation of our proposed approach,
FLAMES, using a dataset comprising 333 bugs from Defects4J [26],
163 bugs from HumanEval-Java [24], and 1,098 bugs from Trans-
formedD4J [41]. We compared FLAMES against 15 state-of-the-
art APR techniques and Qwen2.5-Coder-32B, the leading open-
source LLM for code in well-known leaderboards [42, 87]. Our
experimental results demonstrate that FLAMES can correctly fix
8%, 12%, and 36.5% more bugs than the best baseline on Defects4J,
HumanEval-Java, and TransformedD4J, respectively. We also found
that FLAMES’s semantic-guided patch generation substantially out-
performs widely used patch generation strategies in LLM-based
APR, including beam search andmultiple sampling, with at least 12%
and 23% improvements in the number of correctly fixed bugs. More-
over, our analysis of memory efficiency showed that our method
could reduce VRAM consumption by 42% to 83%, decreasing peak
VRAM requirements from over 80 GB to as low as 12.7 GB across
various configurations and models. Despite the improvement in
memory efficiency, FLAMES does not compromise time efficiency,
even generating plausible patches faster than conventional LLMs
using beam search in many cases.

In summary, we have made the following contributions:

• We empirically study the impact of beam size on the effectiveness
and memory efficiency of five different LLM-based APR tech-
niques, highlighting the challenges of scaling the search space
due to extensive memory consumption of the techniques.

• We introduce a novel approach, namely FLAMES, which fuses
LLM-based and search-based APR, utilizing feedbacks from patch
validation to efficiently discover plausible candidate patches.

• We empirically evaluate the performance of FLAMES against 15
state-of-the-art baselines and the leading open-source LLM for
code. FLAMES correctly fixes 133 bugs in Defects4J, 103 bugs in
HumanEval-Java and 456 bugs in TransformedD4J, surpassing
the best baseline by 8%, 12% and 36.5%, respectively. FLAMES
also outperforms widely-used patch generation strategies by
at least 12%. Moreover, FLAMES substantially reduces memory
consumption by up to 83% without compromising time efficiency.

2 MOTIVATION STUDY

Beam size is a critical hyperparameter in beam search, the funda-
mental algorithm for patch generation in LLM-based APR. In this
section, we evaluate the impact of beam size on the effectiveness
and memory efficiency of LLM-based APR techniques using LLMs.
Although prior studies [24, 45, 63, 72] showed that a substantial
beam size is needed for optimal APR performance, our experiments
reveal that increasing the beam size unduly hinders memory effi-
ciency and subsequently degrades the performance of LLM-based
APR, even on state-of-the-art hardware.

RQ1: How does beam size affect memory efficiency of the
LLM-based APR?Wemeasure the use of VRAM and the frequency
of out-of-memory crashes in the LLM-based APR techniques with
different beam sizes to understand the impact of this parameter on
memory efficiency. We selected beam sizes of 10, 25, 50, 100, and
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Models InCoder-1B InCoder-6B CodeGen-2B CodeGen-6B RepairLLama
Base Model InCoder [15] CodeGen-NL [51] CodeLlama-7B [56]
Pre-training Dataset InCoder [15] ThePile [16] CodeLLama [56]
- Cut-off Date 12.2021 12.2020 08.2023
Fine-tuning Dataset Recoder [86] MegaDiff [48]
- Cut-off Date 03.2018 09.2015
Fine-tuning Technique Full-parameter Fine-tuning QLORA [10]
Model Size 1B 6B 2B 6B 7B

Table 1: Detailed Information of LLM-based Program Repair techniques used in this study.

200, as these are common in prior works [69, 72, 78, 86]. We do not
go beyond a beam size of 200 due to hardware constraints.

RQ2: How does beam size affect the effectiveness of LLM-
based APR? We investigate the impact of beam size on the ef-
fectiveness of five LLM-based APR techniques by measuring the
number of plausible patches. Similarly to RQ1, we also selected
beam sizes of 10, 25, 50, 100, and 200.

2.1 Experimental Design

2.1.1 Benchmark Dataset. To address these research questions,
we conducted experiments with Defects4J, a benchmark of 835
real-world bugs from 17 open-source Java projects [26]. Following
prior studies [9, 41, 43, 72, 78], we focused on 333 single-hunk
bugs, where patches modify a single contiguous code chunk. This
selection aligns with LLM-based APR techniques like InCoder and
CodeGen, which are fine-tune for single-hunk bug fixes [22].
2.1.2 Studied LLM-based APR techniques. To select the target tech-
niques for our empirical study, we conducted a literature review
and identified suitable techniques based on the following criteria:
(1) use beam search as their patch generation strategy, (2) employ
LLM with at least one billion parameters, and (3) provide accessible
fine-tuned models for Automated Program Repair. Applying these
criteria, we identified five LLM-based APR techniques from recent
works [22, 57]: CodeGen (2B, 6B) and InCoder (1B, 6B), fine-tuned
using full-parameter fine-tuning by Jiang et al.[22]; and Repair-
Llama (7B), fine-tuned with efficient-parameter fine-tuning, i.e.,
QLORA, by Silva et al. [57]. Detailed information about these LLMs
are provided in Table 1. Since RepairLlama has utilized quantization,
we excluded its quantized versions from follow-up experiments.
2.1.3 Memory Reduction techniques. In this study, we also inves-
tigate the potential of memory reduction techniques, including
quantization and sequential beam search, through engineering ef-
forts and their impact on our findings. Quantization is a widely
used technique to reduce the memory usage of LLMs by converting
their weights from high- to lower-precision values. In this work,
we applied 4-bit quantization, reducing the LLM’s weights from 32
bits to 4 bits. For clarity, we denote the original LLM-based APR
as full-precision, and its quantized counterpart as quantized in
the following sections. Meanwhile, sequential beam search is
a variant of the implementation of the beam search proposed by
Saibo Geng [11], which processes each beam sequentially through
the model before concatenating them into a single output.

2.1.4 Implementation Details. We implemented LLM-based APR
techniques in Python using PyTorch and HuggingFace. To improve

reliability and reduce bias, we integrated inference code, repair
prompts, and trained models from the original repositories into a
unified framework. Our implementations also used HuggingFace’s
standard beam search. Inference was performed with a batch size
of one, processing one buggy program at a time. All experiments
were run on a single NVIDIA A100 GPU (80GB VRAM).

2.2 RQ1: Impact of Beam Size on Memory
Efficiency

Figure 1a illustrates the experimental results of RQ1. Overall, we
can see that VRAM usage increases significantly as the beam
size increases from 0 to 200 in the full-precision versions of
five studied techniques. For instance, in InCoder-1B, the average
memory usage substantially increases from 20GB at a beam size of
10 to around 60GB at a beam size of 200. Similarly, peak memory
usage increases dramatically, reaching maximum memory limits at
a beam size of only 50. Notably, this increase in VRAM usage leads
to a substantial increase in crashes due to Out-of-Memory
(OOM) errors. For example, the OOM ratio in InCoder-1B increases
from nearly negligible at smaller beam sizes to approximately 50% at
a beam size of 200. Larger models, e.g. CodeGen-6B and InCoder-6B,
show even higher OOM rates, nearly 80%, respectively.

Next, we investigated 4-bit quantization and sequential beam
search, commonly used to optimize model memory requirements,
for reducing VRAM usage. As shown in Figure 1a, quantization
significantly reduces the average and peak VRAM consumption,
thereby reducing OOM crashes. However, sequential beam search
presents trade-offs and does not consistently decrease memory
usage, as confirmed by its authors and our theoretical analysis
(for details, please see our online Appendix [3]). More importantly,
evenwith these techniques, VRAMusage for LLM-based APR
techniques continues to increase with increasing beam size.
For example, CodeGen-2B’s average VRAM usage rises from less
than 10GB at a beam size of 10 to 60GB at 200, with peak usage
nearing the 80GB hardware limit. As a result, despite memory
reduction techniques, LLM-based APR techniques still face frequent
OOM crashes, occurring in 30–85% of cases with a beam size of 200.

Answers to RQ1: Both the average and peak memory us-
age of LLM-based APR techniques increase significantly as
the beam size increases, inducing up to 80% out-of-memory
crashes on an A100 with 80GB of VRAM. Even with mem-
ory reduction techniques, memory usage still escalates, and
crash rates remain substantial as the beam size increases.
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Figure 1: Memory usage and effectiveness of LLM-based APR techniques across beam sizes on an NVIDIA A100 (80GB) using
full-precision (FP) and quantized (Q) models. BS and SeqBS denote standard and sequential beam search.

2.3 RQ2: Impact of Beam Size on Effectiveness

Figure 1b presents our experimental results for RQ2. Overall, we
can see that the number of plausible patches generated by full-
precision versions of LLM-based APR only shows an upward
trend at smaller beam sizes and remarkably declines at larger
sizes. For instance, the number of plausible patches generated by
RepairLlama increases from 139 at a beam size of 10 to 169 at 25, then
drops significantly to 134 at 100 and further to 75 at 200, although
the ratio of plausible patches remains at 0.60. This reduction is
primarily due to the high frequency of OOM crashes, which range
from 30-60% at larger beam sizes, as depicted in Figure 1a. These
results highlight the significant impact of LLMs’ extensive memory
usage on their performance with large beam sizes.

Next, similar to RQ1, we examined the impact of 4-bit quan-
tization and sequential beam search on memory usage and the
effectiveness of LLM-based APR techniques. Overall, the effec-
tiveness of LLM-based APR techniques remains consistent
with sequential beam search, maintaining the same trends.
Meanwhile, quantization maintains an upward trend in ef-
fectiveness up to a beam size of 100. For example, the number
of plausible patches generated by quantized CodeGen-2B increased
from 64 at a beam size of 10 to 107 at a beam size of 100, surpassing
the original full-precision model by 42.7% at the same beam size.
This improvement is due to a reduction in OOM crashes, from 30%
to less than 5%. However, despite these gains, the effectiveness of
quantized models still declines at larger beam sizes, such as 200,
similar to the trend seen in the full-precision models. For example,
the effectiveness of the quantized CodeGen-2B dropped from 114
plausible patches at a beam size of 50 to 91 at 100, and further to 55
at 200, reflecting declines of 20% and 48%, respectively.

Answers to RQ2:As the beam size increases, the effective-
ness of LLM-based APR increases, peaking at mid-range
beam sizes before declining at larger sizes due to higher
OOM crash rates, particularly in larger models. Even with
memory reduction techniques, the APR’s effectiveness still
quickly degrades at beam sizes larger than 100.

3 APPROACH
Our findings in Section 2 highlight that scaling the beam size to
a certain threshold may help improve the effectiveness of APR
at the cost of extensive memory consumption, above which the
effectiveness quickly degrades even on state-of-the-art hardware.
To address these limitations, we propose a novel approach, FLAMES,
which combines LLM-based and search-based APR for memory-
efficient, semantic-guided patch generation.

Figure 2 illustrates the overall pipeline of FLAMES, which em-
ploys PG-TD as the core algorithm to guide patch generation in
LLM-based APR. PG-TD is a best-first search algorithm, inspired
by Monte Carlo Tree Search [33], to decode Transformer models.
PG-TD formulates the decoding process of Transformers models
as a search problem on a tree structure whose nodes represent
tokens. PG-TD then iteratively expands this tree with the informa-
tion provided by the models and searches for an optimal candidate
using a predefined reward function. In the following sections, we
first present a high-level overview of patch generation of LLM-
based APR with PG-TD and then present a detailed methodology
of PG-TD’s step in APR context.

3.1 Patch Generation with PG-TD
Algorithm 1 outlines the patch generation process in APR using
the PG-TD algorithm. At a high level, PG-TD conducts an iterative
search for plausible patches.This search proceeds by refining partial
repair candidates over multiple iterations. At each iteration, PG-TD
selects the most promising partial patch from the current search
space, as described in Section 3.2. The chosen partial patch is then
used in two key operations. First, since it is the most promising
candidate, PG-TD will further expand the search space by incor-
porating most of the next potential tokens for the partial patch,
predicted by an LLM-based APR model (Section 3.3). Second, the
partial patch is simulated into a complete patch candidate using the
same LLM-based APR model and is subsequently evaluated against
a predefined set of correctness specifications to compute a reward
value (Section 3.4). This reward is then backpropagated through
the search tree to update the estimated potential of the nodes in
the partial patch (Section 3.5). This iterative process continues until
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Figure 2: Overview of FLAMES

a plausible patch is discovered, that is, a candidate that satisfies the
given specifications or the iteration limit is reached.

3.2 Selection

At this stage, our goal is to select the most promising partial
patch to explore. To achieve this, we employ a policy algorithm
that strikes a balance between exploiting potentially high-reward
states and exploring less-visited ones. Specifically, an action (i.e.,
adding a token) is chosen based on three criteria: (1) the action’s
historical reward in relation to the current state is high, indicating
strong potential; (2) language models (LLMs) predict that the action
is a suitable next token, as reflected by its prediction probability;
and (3) the resulting state after taking the action is under-explored.

To implement this approach, we evaluate three commonly used
policy algorithms in Monte Carlo Tree Search (MCTS): UCB [33],
and two variants of P-UCB [58], one with fixed weights (Fixed P-
UCB) and the other with variable weights (Variable P-UCB). Our
results indicate that Variable P-UCB is the most effective algorithm
for the APR task, leading us to adopt it as our primary policy
algorithm (See Section 4.6 for further details.)

3.3 Expansion

This stage aims to expand the search tree by adding possible next
tokens. As the number of possible tokens in the vocabulary is huge,
random sampling, which is used in MCTS [33] is likely to return
in invalid and low-potential tokens. Therefore, FLAMES leverages
fine-tuned LLM to suggest top-: next tokens with the highest pre-
diction score given the current state following PG-TD [83]. Note
that, as a state can be re-visitedmultiple times during the tree search,
FLAMES also leverages a caching mechanism to avoid redundant
computation. In particular, whenever LLMs make a prediction, the
input sequence, i.e., state and top-: next tokens, is cached using a
hash map. Then, when the algorithm needs LLM to predict top-:
next tokens, such information can be reused if it exists in the cache.

Algorithm 1 Semantic-guided Patch Generation with PG-TD.
(�!��) , �-%�#� and ��� %'$% are presented in Sec-
tion 3.2, 3.3 and 3.5, respectively. (�"*!�)� and �+�! are pre-
sented in Section 3.4.

Require: 1?: buggy program; L: LLM-based Program Repair
model; S: set of correctness specifications; <0G_8C4AB: num-
ber of iterative refinement steps

Ensure: 2? : plausible patch for 1? or None if no patch found
1: A>>C ← L .8=8C80;_C>:4= ⊲ Initialize search tree
2: A4F0A3 ← {} ⊲ Initialize reward dictionary
3: for 8 = 1 to<0G_8C4AB do
4: ?? ← (�!��) (A>>C, A4F0A3) ⊲ Select best partial patch
5: A>>C ← �-%�#� (A>>C,L, 1?) ⊲ Expand search tree
6: 2? ← (�"*!�)� (??,L, 1?) ⊲ Simulate complete patch 2?
7: A ← �+�!(2?,S, 1?) ⊲ Evaluate rewards of ?? using 2?
8: if A ≠ 1 then
9: A4F0A3 ← ��� %'$% (A4F0A3, ??, A ) ⊲ Update rewards

10: else
11: return 2? ⊲ Return plausible complete patch
12: end if
13: end for
14: return None

In this work, we set : = 10 and further discuss the impact of : on
our method in Sections 4.6.2.

3.4 Evaluation

This stage aims to evaluate the potential of the current state, i.e.,
how likely the partial patch leads to a optimal (complete) patch.
Similar to expansion, it is impossible to evaluate the current state
using an random simulation as used in MCTS algorithm. Conse-
quently, FLAMES leverages beam search to automatically complete
the current state, i.e., a partial patch ?? , to form a complete patch
2? . However, it is noteworthy that leveraging the beam search as in
original PG-TD still hinders memory efficiency. Therefore, instead
of beam search, FLAMES utilizes a greedy search that is equivalent
to a beam search with a beam of size 1, to find the complete patch
for the current state while keeping low memory consumption.

Then, given the completed patch, FLAMES estimates the poten-
tial of current state by calculating a reward function '(2?, B?42).
Theoretically, B?42 and reward function ' can takes any kinds of
specification and a corresponding pre-defined reward function. In
this work, following common practices in literature [17], we lever-
age developer-written test cases as our specification and utilize
the passing ratio, which is widely-used in search based APR [17],
as our reward function. More formally, given a program 2? and
a set of test cases B?42 , we define our reward function as follows:
'(2?, B?42) = 5?0BB

5?0BB+55 08; with 5?0BB and 55 08; is the number of pass-
ing and failing test cases observed when running 2? on B?42 .

3.5 Backpropagation

This stage aims to update the value of nodes in the tree for
guiding next steps of the search process. Intuitively, the stage allows
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FLAMES to provide feedback from test validation for guiding the
patch generation process of LLMs. Particularly, the reward of a
state (calculated based on automatically-completed program) is
backpropagated to its parents recursively until the root is reached.
Similar to other reinforcement learning algorithms [27, 60, 65], we
aim to maintain the maximum observed reward as an expected
return value for a given state B and the corresponding action 0.
To do so, for all state and action pair (B, 0) along the path from
the current state to the root node, FLAMES updates their Q-value
by & (B, 0) = <0G (& (B, 0), '(2?, B?42)), where '(2?, B?42) is the
reward value of the current state action pair (B, 0) with 2? is an
automatically complete patch of B .

3.6 Implementation Details.

We implemented FLAMES by extending the PG-TD [83] frame-
work based on the DynaGym toolkit. We use RepairLLama, the
best-performing model among LLM-based repair techniques, as
our default LLM-based repair model. For repair, FLAMES generates
up to 200 patches and sets a 30-minute timeout for each bug, as
recommended by developers [52]. Experiments are conducted on
an NVIDIA A100 GPU with 80 GB VRAM, 250 GB RAM, and a
32-core Intel Xeon CPU at 2.90 GHz, running Red Hat Enterprise
Linux 9.3 and Java 1.8.0_241. This setup is comparable to those used
in related works [57, 63].

4 EMPIRICAL EVALUATION
4.1 Research Questions
Continuing from our motivation study in Section 2, our empirical
evaluation aims to answer the following four research questions.

RQ3: How effective is FLAMES? We assess the effectiveness
of FLAMES on the Defects4J [26], HumanEval-Java [22] and Trans-
formedD4J [41] datasets, comparing our proposed technique to 15
state-of-the-art APR techniques and Qwen2.5-Coder-32B, the best
open-source LLM for code in well-known leaderboards [42, 87].

RQ4: How efficient is FLAMES? We evaluate the time and
memory efficiency of FLAMES and compare it with standard and
sequential beam search algorithms.

RQ5: How effective is FLAMES’s semantic-guided patch
generation?We investigate the effectiveness of FLAMES’s semantic-
guided patch generation by implementing our approach with six
LLMs for APR and comparing their effectiveness to the full-precision
models using two widely used patch generation strategies: beam
search [57, 78] and multiple sampling [63, 68].

RQ6: How do different configurations affect the perfor-
mance of FLAMES? Finally, we examine the impact of various
key factors on the effectiveness of FLAMES, including the reward
function, the expansion size, and the policy algorithm.

4.2 Experimental Setup

4.2.1 Benchmark Dataset. Similar to our initial motivation study
(Section 2.1), we evaluated our method using 333 single-hunk bugs
from the Defects4J dataset [26]. Furthermore, we used HumanEval-
Java [22] and TransformedD4J [41], which contain artificial bugs
introduced by applying bug injection to normal programs and

semantic-preserving transformations to Defects4J bugs, respec-
tively, to mitigate the risk of data leakage.

4.2.2 APR Baselines. To evaluate the effectiveness of our approach
(RQ3), we compared FLAMES with the leading baselines in vari-
ous APR categories: Template-based, NMT-based, Cloze-based, and
LLM-based APR techniques. For LLM-based APR, we evaluated
five models using their best variants identified in RQ2. For Cloze-
based APR, we included FitRepair [68], AlphaRepair [72], and Repi-
lot [63]. We also compared FLAMES with NMT-based methods, i.e.,
ITER [79], Recoder [86], KNOD [23], and RewardRepair [78], as well
as template-based approaches, i.e., GAMMA [82], TENURE [47],
and TBar [43]. Finally, we also included Qwen2.5-Coder-32B [21],
the leading LLM for code on well-known leaderboards [42, 87].
Following standard practices [9, 22, 24, 63, 72], we performed eval-
uations under the assumption of perfect fault localization, which
ensured that variations in fault localization techniques do not affect
the results. For LLM-based techniques, we used the same configu-
rations as in Section 3.6. For other techniques, we collected bug fix
results from their original papers and replication packages, follow-
ing common practices in prior works [24, 63, 72, 78].

4.2.3 Patch Generation Algorithm Baselines. To evaluate the effec-
tiveness of FLAMES’s semantic-guided patch generation (RQ5), we
also compared our approach with twowell-known patch generation
strategies: beam search and multiple sampling. For beam search,
we leverage the standard implementations from the Huggingface
library, a widely adopted toolset for training and deploying LLMs.
For multiple sampling, we first set the LLM temperature to 1 to
maximize its diversity. Then, we repeat the default patch generation
of these models (using beam search) until we reach 200 patches.

4.2.4 Evaluation Metrics and Patch Correctness Assessment. We
assessed the effectiveness of APR techniques using a standard met-
ric: the number of correct patches. To identify patch correctness,
following prior works [34, 41, 45, 72, 78], we conducted a manual
evaluation to determine if they were syntactically or semantically
equivalent to developer-written patches. Note that while manual
patch correctness assessment is precise, it is resource-intensive and
requires considerable human effort.

4.3 RQ3: Comparison with Existing Techniques
4.3.1 Repair Success. Table 2 presents the number of correct fixes
generated by our approach, FLAMES, and baseline methods in
Defects4J. FLAMES successfully repairs 133 of the 333 single-hunk
bugs, outperforming all existing APR techniques.

Comparison with RepairLLama’s Variants. Specifically, our
approach generates correct patches for 21 and 43 more bugs than
two other variants with beam search and multiple sampling of its
core LLM, RepairLLama. These results highlight the advantages
of our semantic-guided patch generation approach using PG-TD.
This method enables FLAMES to scale to larger beam sizes without
compromising memory efficiency, as observed in RepairLLama with
beam search. Meanwhile, it also guides the patch generation process
with semantic feedback, resulting in a more effective approach
than multiple sampling without guidance. Although this approach
slightly reduces the precision from 0.66 to 0.63, this trade-off is
justified by a 19% increase in repair success. Moreover, FLAMES
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Table 2: Comparison with state-of-the-art APR techniques
on Defects4J benchmark. #Correct and #Plausible denotes
the number of correct and plausible patches generated by
each tool. RepairLLama (+BS) and (+MS) denotes the results
of RepairLLama with beam search and multiple sampling,
respectively.

Techniques #Correct #Plausible Precision

TBar 46 - -
GAMMA 87 - -
TENURE 84 - -
RewardRepair 79 - -
Recoder 43 - -
KNOD 110 - -
ITER 55 - -
AlphaRepair 95 - -
FitRepair 123 - -
Repilot 116 - -
InCoder-1B 42 75 0.56
InCoder-6B 50 96 0.52
CodeGen-2B 41 88 0.47
CodeGen-6B 49 94 0.52
Qwen2.5-Coder-32B 68 112 0.61
RepairLLama (+BS) 112 170 0.66
RepairLLama (+MS) 90 151 0.59
FLAMES 133 211 0.63

maintains a higher precision than other LLM-based APR techniques
and RepairLLama with multiple sampling.

Comparisonwith State-of-the-Art Techniques.Additionally,
FLAMES significantly outperforms other state-of-the-art APR base-
lines. It correctly fixes 10more bugs than FitRepair, the best baseline,
achieving an 8% improvement. Additionally, FLAMES outperforms
the top NMT-based technique, KNOD, and the top template-based
approach, GAMMA, by 21% and 53%, respectively, in the number
of correct patches. Notably, FLAMES achieves this performance
with a budget of only 200 validated patches and a 30-minute pause
per bug, while FitRepair and KNOD require 1,000–5,000 validated
patches and a pause of 5-hours per bug. Furthermore, FLAMES out-
performs Qwen2.5-Coder-32B, the leading LLM for code, by 51%.
This advantage comes from two key factors: first, this model is not
specifically trained for APR, unlike our core model, RepairLlama;
second, FLAMES incorporates semantic-guided patch generation
that enhances its repair effectiveness.

Unique Fixes. We found that FLAMES achieves the highest
number of unique fixes among the best baselines for NMT-based
(KNOD [23]), Cloze-based (FitRepair [68]) and LLM-based (Repair-
LLama [57]) APR approaches. Particularly, RepairLlama, KNOD,
and FitRepair contribute 6, 5, and 9 unique fixes, respectively, while
FLAMES can fix 14 unique bugs. Moreover, there are 85 correct
fixes that are not addressed by these four leading techniques. By
combining all the techniques, we can successfully fix 299 bugs. This
shows that FLAMES can be complementarily used with existing
APR methods such as KNOD and FitRepair to significantly increase
the number of correct fixes generated.

Table 3: Comparison with RepairLLama on multi-location
bugs from Defects4J.

Techniques Correct/Plausible Patches
RepairLLama 16/35
FLAMES 24/59

Table 4: Comparison with state-of-the-art APR techniques
on HumanEval-Java and TransformedD4J benchmark. The
results are displayed as x/y, with x, y denotes the number of
bugs with correct and plausible patches, respectively.

Techniques HumanEval-Java TransformedD4J

CodeGen-6B 57/65 _/393
InCoder-6B 71/81 _/427
Qwen2.5-Coder-32B 68/111 _/403
RepairLLama 92/118 334/581
FLAMES 103/133 456/776

4.3.2 Repair Success on Multi-Location Bugs. Beyond the com-
parison on single-location bugs, we also conduct experiments on
multi-location bugs following the settings of RepairLLama [57] with
172 bugs from Defects4J. In this setting, each bug requires edits on
multiple non-consecutive locations within a single function. We
compare the effectiveness of FLAMES with our base model and
also the best LLM baseline, RepairLlama to further understand the
impact of FLAMES on repairing multi-location bugs. The detailed
results are presented in Table 3

Our experimental results show that while RepairLLama (the
best LLM baseline) generates 35 plausible patches for these bugs,
FLAMES (with RepairLLama as the base LLM) can generate 59
plausible patches, demonstrating 68% improvement over the best
baseline. Further inspection reveals that FLAMES generates 24 cor-
rect patches out of 59 plausible ones, compared to only 16 correct
patches generated by RepairLLama. This result confirms the advan-
tages of our patch generation for such complex scenarios.

4.3.3 Generalizability. To address concerns related to data leak-
age [22] and benchmark overfitting [12], we extended our eval-
uation of FLAMES and the four most effective LLM-based APR
techniques from the previous experiment. Specifically, we evalu-
ated their performance on the HumanEval-Java [24] and Trans-
formedD4J [41] benchmarks. Given the large number of plausible
patches generated by these techniques on TransformedD4J, we
limited our correctness assessment to patches produced by the two
most effective methods, namely FLAMES and RepairLLama.

Overall, FLAMES significantly outperforms the baselines in terms
of the number of correct patches. For example, in HumanEval-Java,
FLAMES successfully fixes 11 more bugs than the best-performing
baseline, RepairLlama, which generates 92 correct fixes, represent-
ing an improvement of 12%. Similarly, in TransformedD4J, FLAMES
achieves a 36.5% improvement over the best baseline. These results
demonstrate the generalizability of FLAMES across various eval-
uation benchmarks, highlighting its effectiveness in generating
correct fixes in different data sets.

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Comparison of memory usage among the full-
precision LLM (Full-Precision), quantized LLM (Quantized),
full-precision LLM with sequential beam search (SeqBS) and
full-precision LLM with FLAMES.

Models Method Average Peak OOM
(GB) (GB) (%)

Full-Precision 72.2 80 62.8
CodeGen-2B Quantized 52.9 80 28.5

SeqBS 68.2 80 69.1
PG-TD 12.1 13.9 0.0

Full-Precision 78.7 80 80.5
CodeGen-6B Quantized 64.0 80 49.8

SeqBS 75.5 80 85.3
PG-TD 27.1 31.7 0.0

Full-Precision 52.7 80 31.5
InCoder-1B Quantized 31.2 80 6.9

SeqBS 56.1 80 49.5
PG-TD 7.4 12.7 0.0

Full-Precision 76.8 80 78.1
InCoder-6B Quantized 57.2 80 39.0

SeqBS 75.6 80 86.6
PG-TD 32.4 37.4 0.0

Full-Precision 66.6 80 62.8
RepairLlama PG-TD 8.1 22.8 0.0

Answers to RQ3 (Effectiveness): FLAMES successfully
fixes 133, 103, and 456 bugs on Defects4J, HumanEval-Java,
and TransformedD4J, significantly outperforming the best
baselines by 8%, 12% and 36. 5%, respectively.

4.4 RQ4: Efficiency

4.4.1 Memory efficiency. Table 5 compares the memory usage of
FLAMES with three baselines: (1) the full-precision LLM with beam
search, (2) the quantized LLM with beam search, and (3) the full-
precision LLM with sequential beam search, across five different
LLMs. We evaluated VRAM usage using three key metrics: average
VRAM usage, peak VRAM usage observed in our dataset, and out-
of-memory ratios. Since our hardware is capped at 80GB VRAM,
we assign a memory usage of 80GB to data points that experience
OOM errors. Consequently, in cases of OOM, the reported memory
usage represents a lower bound of the actual values.

Overall, the VRAM usage of FLAMES demonstrates a substantial
reduction across all evaluated models, outperforming both the orig-
inal full-precision configurations and the two widely used memory
reduction techniques: Quantization and Sequential Beam Search
(SeqBS). For example, in the case of the InCoder-1B model, the aver-
age VRAM usage drops from 52.7 GB in the original configuration
to just 7.4 GB with FLAMES, representing a reduction of 86%. In
comparison, the quantization approach reduces memory usage to
31.2 GB, while SeqBS increases it to 56.1 GB, making FLAMES the
most memory-efficient method.

Table 6: Comparison of average running times of FLAMES
and beam search (BS) for finding plausible patcheswith statis-
tical measures on different models and number of generated
patches (# Patches)

Model # Patches Avg. Time (s) |X | p-value
Flames BS

CodeGen-2B

10 37.99 49.43 0.33 0.002
25 55.89 63.12 0.22 0.013
50 68.66 88.07 0.24 0.004
100 92.63 124.72 0.27 0.005
200 93.88 133.40 0.37 0.006

InCoder-1B

10 48.18 68.71 0.35 0.001
25 91.39 86.82 0.07 0.195
50 115.79 138.61 0.11 0.081
100 129.62 177.19 0.12 0.059
200 161.58 199.17 0.08 0.178

RepairLLama

10 44.40 57.55 0.25 0.001
25 90.95 79.21 0.13 0.027
50 103.79 96.81 0.15 0.014
100 126.74 111.42 0.15 0.022
200 98.42 101.35 0.22 0.018

Regarding peak VRAM usage, while baseline methods frequently
reach the 80 GB VRAM limit, FLAMES maintains peak values well
below this threshold. Notably, FLAMES achieves amaximumVRAM
usage of just 12.7 GB for the smallest model (InCoder-1B) and 37.4
GB for the largest model (InCoder-6B). In contrast, both the original
full-precision and SeqBS configurations consistently hit the 80 GB
VRAM limits, increasing the risk of out-of-memory (OOM) errors.

Furthermore, in terms of OOM ratios, FLAMES completely elim-
inates OOM errors across all models, achieving a 0% OOM ratio,
while the original full-precision and SeqBS methods frequently ex-
perience severe memory failures. For example, the full-precision
CodeGen-6B model encounters an 80.5% OOM rate, making it un-
usable in memory-constrained environments. Even quantization,
while reducing memory usage, does not guarantee the elimination
of OOM errors, as observed with CodeGen-6B, which still reports
an OOM ratio of 49.8%.

Answers to RQ4.1 (Memory Efficiency): FLAMES can
significantly reduce VRAM usage in LLMs, successfully
minimizing average VRAM usage by up to 83% and reduc-
ing peak VRAM requirements from 80 GB to as low as 12.7
GB across various configurations and models. Addition-
ally, FLAMES eliminates OOM errors, while the baselines
witness OOMs in up to 86.6% of the data points.

4.4.2 Time efficiency. In this experiment, we evaluated the time
efficiency of LLM-based APR using our proposed method, FLAMES,
compared to traditional beam search techniques. Our aim is to val-
idate the hypothesis that ”FLAMES can identify plausible patches
more quickly than the traditional beam search algorithm”. To validate
this hypothesis, we measure the time each method takes to suc-
cessfully identify plausible patches, employing the Mann-Whitney-
Wilcoxon (MWW) statistical test and Cliff’s Delta for effect size
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assessment. This experiment focuses on the CodeGen-2B, InCoder-
1B, and RepairLlama models, chosen for their lower incidence of
out-of-memory (OOM) crashes, ensuring a robust sample size for
statistical testing. The detailed results are presented in Table 6.

For the CodeGen-2B model, our hypothesis is supported in all
examined numbers of generated patches, with p values between
0.002 and 0.013 and effect sizes between 0.22 and 0.37, indicating
that FLAMES is more time efficient than beam search. Notably,
FLAMES reduce time by approximately 11.44 seconds and by 39.52
seconds with 10 and 200 generated patches.

The RepairLlama model also supports the hypothesis with p-
values between 0.001 and 0.027 across all examined numbers of
generated patches, confirming the time efficiency of FLAMES over
the beam search, although the effect sizes range from negligible
to small. Consequently, FLAMES shows lower average running
times with 10 and 200 generated patches. For other configurations,
while FLAMES generally performs faster than the beam search, the
occasional longer run times of FLAMES skew the average, leading
to variability in the results.

In contrast, the InCoder-1B model exhibits greater variability
between the two methods. Although FLAMES tends to generate
patches faster at higher numbers of generated patches (50, 100,
and 200), it performs worse than BS with 25 generated patches.
The most favorable performance for FLAMES is observed with 10
generated patches, where it significantly outperforms the beam
search (p-value 0.001). However, for 25 and 200 generated patches,
the differences in running times lack statistical significance, indi-
cating that the benefits of FLAMES do not apply uniformly in all
configurations within this model.

Answers to RQ4.2 (Time Efficiency): FLAMES signifi-
cantly improve time efficiency in LLMs, surpassing tra-
ditional beam search methods.

4.5 RQ5: Effectiveness of Semantic Guided Patch
Generation

In this experiment, we evaluated the effectiveness of FLAMES’s
semantic-guided patch generation in comparison to beam search
and multiple sampling. These methods were evaluated in five LLM-
based automated program repair (APR) models, as introduced in
Section 2.1.2, together with Qwen2.5-Coder-32B, a state-of-the-art
LLM for code. The detailed results are presented in Table 7.

FLAMES consistently outperforms beam search in all models,
with improvement rates ranging from 12% to 48% in terms of the
number of correct patches. For example, FLAMES generates 21
more correct patches than RepairLlama, our default base model.
This is due to FLAMES ’s effective use of GPU resources which
allows for a more thorough exploration of the large patch space.
In contrast, beam search requires substantial VRAM, resulting in a
high out-of-memory crash rate, as discussed in RQ4 and RQ1.

A common approach to mitigate memory constraints is multi-
ple sampling, which involves performing beam search with a low
beam size and subsequently sampling the model multiple times
to generate additional candidate patches. This method enables the

Table 7: The number of plausible patches generated by
FLAMES’s patch generation algorithm compared to beam
search (BS) and multiple sampling (MS) on different LLMs

LLM BS MS FLAMES

CodeGen-2B 41 38 57
InCoder-1B 57 52 64
RepairLLama 112 90 133
CodeGen-6B 49 39 70
InCoder-6B 50 44 74
Qwen2.5-Coder-32B _ 68 91

generation of more candidate patches while reducing memory con-
sumption. However, our findings indicate that this approach results
in lower effectiveness compared to beam search. For instance, in the
case of RepairLLama, multiple sampling leads to an approximately
20% decline in performance. Consequently, FLAMES significantly
outperforms multiple sampling across models, achieving improve-
ments ranging from 23% to 68%. We hypothesize that this perfor-
mance gap arises because FLAMES leverages feedback from test
validation to guide patch generation, whereas multiple sampling
relies solely on random sampling from the model’s output.

In conclusion, consistent performance improvements across
various models strongly support the effectiveness of FLAMES’s
semantic-guided patch generation compared to widely used patch
generation approaches such as beam search and multiple sampling.

Answers to RQ5 (Effectiveness of Patch Generation):
FLAMES’s semantic-guided patch generation demon-
strates superior performance across multiple LLMs in
APR tasks, consistently outperforming widely used patch
generation methods: beam search and multiple sampling,
by at least 12% and 23%, respectively.

4.6 RQ6: Ablation study

To systematically assess how each component influences the
performance of FLAMES, we investigated three key factors: the
semantic-guided reward function (for the evaluation phase), the
size of the expansion : (for the expansion phase), and the choice of
the policy algorithm (for the selection phase).

4.6.1 Reward Function. In this experiment, we evaluate the ef-
fectiveness of our reward function, as detailed in Section 3.4. We
hypothesize that this function will guide the generation of more
plausible patches by leveraging the ratio of passing test cases. To
test this hypothesis, we compare our approach with a variant that
depends solely on the models’ probability outputs and disregards
feedback from our semantic reward function. Our experimental
results show that incorporating a semantic reward function can
lead to a 40% increase, from 150 to 210, in plausible patches. This
substantial improvement highlights the value of semantic guidance
in refining the search process to concentrate on patches that are
more likely to succeed.
4.6.2 Expansion Size (:). Next, we explore how the expansion
size : affects FLAMES by experimenting with various values of : ,
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including 3, 5, 7, 10, 15, 20, 25 and 30. Our findings show that as :
increased from 3 to 10, the number of plausible patches increased
from 190 to 210. Unfortunately, a further increase of : to up to 30
showed minimal gains, with plausible patches ranging from 202
to 204. This is due to the broader, yet shallower search at higher k,
which favors exploration over the exploitation needed for certain
bugs. This trend suggests that a larger : may allow for a more thor-
ough exploration of the solution space, enhancing the likelihood of
identifying high-quality patches. However, this comes at a trade-off
between the depth of exploration and exploitation.

4.6.3 Policy Algorithms. Finally, we investigated the impact of dif-
ferent policy algorithms on the generation of plausible patches. We
examined the performance enhancement observed with advanced
policy algorithms, including the original UCB [33], and two variants
of P-UCB[58]—one with fixed weights (Fixed P-UCB) and one with
variable weights (Variable P-UCB). Our experimental results show
that Variable P-UCB is the most effective algorithm, generating
210 plausible patches. This policy algorithm outperforms UCB and
Fixed P-UCB by 17% (179 plausible patches) and 11% (188 plausible
patches), respectively. The performance of Variable P-UCB likely
stems from its ability to dynamically adjust the balance between
exploration and exploitation during the search process, thereby
optimizing the discovery of plausible patches.

5 DISCUSSION
5.1 Limitations

First, while our approach, FLAMES, correctly fixes 21 more bugs
and 42 unique bugs compared to the original RepairLlama, there
are 21 bugs that the original model could repair but FLAMES could
not. In an in-depth analysis on the 21 bugs that FLAMES cannot
repair, we observed that the frequent pattern that these bugs most
often require entirely new code segments. However, we also notice
that these patterns appear in bugs that can be successfully repaired
by FLAMES but cannot be repaired by RepairLlama. Therefore, it
does not show a strong separation between the patterns of bugs
fixed and not fixed by FLAMES. Therefore, we hypothesize that the
failures stem from FLAMES’s trade-off strategy rather than specific
types of bug. Specifically, FLAMES’s failure to repair these bugs can
possibly be attributed to FLAMES’s smaller expansion size of 10.
This limitation compromises FLAMES’s exploration, resulting in a
less comprehensive search space than that of RepairLlama’s beam
search, which considers up to 25 possible tokens of expansions.
Consequently, FLAMES misses some bugs that could potentially
be fixed with a broader search scope. Although a straightforward
solution would be to increase the expansion size : , doing so intro-
duces a trade-off between exploitation and exploration, as shown
in Section 4.6.2. Therefore, further analysis is essential to opti-
mize the balance between expansion size and efficiency to enhance
FLAMES’s performance.

Second, FLAMES is constrained by the design of its reward func-
tion, which relies on the number of passing and failing test cases.
While our experiements demonstrated the effectiveness of our re-
ward function on guiding LLM-based APR to generate more plau-
sible patches and thereby more correct patches. It is important to

note that a substantial increase in plausible patches does not al-
ways result in a proportionally large increase in correct patches.
Moreover, it also raise the problem of test overfitting as observed
in search-based APR [38, 55]. We believe that refining the reward
function with additional criteria such as naturalness [28, 70], syn-
tax/semantic similarity [64, 76] or history versions [36, 50, 61] could
enhance both the effectiveness and precision of FLAMES.

5.2 Threats to validity
5.2.1 Internal Validity. A main threat to internal validity stems
from the issue of data leakage, where evaluation data might overlap
with training and fine-tuning data. Tomitigate this risk, we followed
prior studies [22, 57] and utilized the HumanEval-Java dataset for
evaluation. This dataset consists of 163 bugs introduced by inject-
ing faults into the HumanEval benchmark [8]. Additionally, we
employed TransformedD4J, which comprises 1,090 bugs generated
through semantic-preserving transformations of Defects4J, further
reducing the likelihood of data leakage. Note that, HumanEval-Java
and TransformedD4J datasets were publicly released in July 2023
and January 2024, respectively. In contrast, CodeLlama, the base
LLM underlying RepairLlama, was released in August 2024. This
temporal gap significantly reduces the likelihood of data leakage
during the pre-training phase. Furthermore, the fine-tuning data
used in the development of RepairLlama was extracted from the
Boa dataset [13] collected in September 2015, further minimizing
the possibility of overlap with our evaluation datasets. Therefore,
we believe that the risk of data leakage in our study is negligible.
Another concern is the manual evaluation of patch correctness. To
address this, authors and an external annotator rigorously analyze
each patch to confirm semantic equivalence to developer-written
patches. Moreover, to ensure transparency, we also have made all
patches generated by NPR techniques and our assessment results
available in our replication package.

5.2.2 External Validity. Our research shares a common threat to
external validity with prior works [24, 41, 57, 63, 71, 72] that our
results may not generalize across different programming languages
and datasets. Tomitigate this risk, we evaluated ourmodel, FLAMES,
and state-of-the-art baselines using three datasets, Defects4J [26],
HumanEval-Java [22] and TransformedD4J [41], and found our per-
formance generalize across these datasets. Additionally, the core
contributions of our approach are language-agnostic, suggesting po-
tential applicability to various programming languages. Therefore,
we believe that this risk is minimal.

Another external validity relates to our generalization to larger
LLMs such as ChatGPT or Claude models. FLAMES modify the
LLM decoding strategy and thus require access to LLMs.This avoids
evaluation on such closed-source LLMs. As an alternative, we have
done our best to conduct experiments on CodeQwen2.5, the best
open source code LLM across leaderboards, and demonstrate the
effectiveness of FLAMES on this model in Table 7. Moreover, our
experiments for RQ5 demonstrate the generalizability of FLAMES
across six well-known LLMs with diverse model architectures and
sizes. Therefore, we believe that FLAMES is capable of generalizing
effectively to different LLMs.
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5.2.3 Construct Validity. Our methodology may encounter threats
to construct validity concerning the appropriateness of our evalua-
tion metrics. Due to limited human resources, besides the number
of correct patches, we leverage the number of plausible patches as a
proxy effectiveness metric, which might not fully capture the actual
effectiveness of APR techniques. To minimize this risk, we only
utilized this metric when comparing different variants of the same
APR techniques, where we observed consistent trends between
correct patches and plausible patches.

In addition, we also share a common threat to construct validity
with previous work [9, 22, 24, 63, 72] on the assumptions of perfect
fault localization. However, we did our best efforts to ensure a fair
comparison between FLAMES and LLM-based Program Repair by
adopting the same fault localization assumptions as our base mod-
els as we reused their preprocessing pipelines. For example, in the
default setting, our base model, RepairLlama, requires perfect fault
localization, so that FLAMES also needs to use perfect fault localiza-
tion. However, for multi-location bugs, RepairLlama only needs a
coarse-grained bug region. As shown in Section 4.3.2, FLAMES can
effectively repair multi-location bugs under this assumption. These
results suggest that FLAMES may operate without perfect fault
localization, provided that its base models support such flexibility.

Finally, as FLAMES relies on test case, it is possible that its
performance may not generalize to lower-quality test suite. To
address this concern, we evaluated the impact of test suite quality
on FLAMES by grouping bugs according to line coverage of their
test suites: <60%, 60–80%, and >80%. FLAMES produced plausible
patches for 65%, 69%, and 62% of bugs in these groups, and correct
patches for 40%, 42%, and 40%, respectively. However, the precision
for the >80% coverage group was slightly higher at 0.64, compared
to 0.61 and 0.62 in the lower coverage groups. These results suggest
that FLAMES performs consistently across varying test suite quality,
with a slight decrease in precision on lower coverage suites.

6 RELATED WORKS

6.1 Large Language Models for Automated
Program Repair

Recent advancements in Large LanguageModels (LLMs), pre-trained
on extensive datasets, have significantly advanced various coding
tasks [14], such as code generation [8, 15], understanding [1, 49],
and analysis [29, 39]. In the field of APR, LLMs have also shown
great promise when employed through either fine-tuning tech-
niques [20, 22, 57] or prompting methods [71, 73].

Fine-tuning approaches concentrate on refining the weights of
code-specific LLMs like CodeLLama [56] and InCoder [15], using
APR datasets including MegaDiff [48]. Notably, Jiang et al.[22]
demonstrated significant enhancements in LLMs for APR through
full-parameter fine-tuning, showing remarkable improvements over
the original models. Silver et al.[57] explored the effectiveness of
the QLORA [10] fine-tuning method, assessing various input and
output formats in LLM-basedAPR and introducing RepairLLama, an
advancedAPR technique using CodeLLama. Jin et al.[25] introduced
InferFix for fixing security vulnerabilities by fine-tuning Codex
model and retrieval augmented generation.

Prompting approaches aim to directly leverage LLMs without
finetuning. Particularly, they mainly focus on designing effective
prompting which provide feedbacks to guide LLMs to generate
correct programs. Notably, Xia et al. [73] propose conversation-
driven APR, namely ChatRepair, which guide ChatGPT with instant
feedbacks such as test name, relevant test code, and error message,
to perform APR in a conversational style. Ahmed et al. [2] and Yin
et al. [80] levarages chain-of-thought prompting to improve the
effectiveness of LLMs on APR. Zhang et al.[84] and Bouzenia et
al.[5] introduce AutoCodeRover and RepairAgent,tools that enable
LLMs to follow human-like debugging steps using multi-agent
systems to fix real-world issues.

Different from these studies that typically employ beam search
to generate candidate patches, our work empirically investigates
the limitations of beam search, particularly when implemented on
standard hardware setups. Motivated by these shortcomings, we
propose the use of PG-TD to guide LLM-based APR.

6.2 Efficiency of Automated Program Repair
In addition to evaluating effectiveness, several studies also focus on
the efficiency of APR [6, 7, 44, 54, 75]. Liu et al. [44] conducted a sys-
tematic assessment of 16 APR techniques, revealing inefficiencies
in state-of-the-art APR tools and advocating for further industry ex-
ploration of efficiency impacts. Chen et al. [6] introduced UniAPR,
a patch validation framework that enhances efficiency by avoiding
unnecessary restarts of the JVM for all existing bytecode and source
code-level APR techniques. Xiao et al. [74] developed ExpressAPR,
which accelerates APR by integrating five mechanisms: mutant
schemata, mutant deduplication, test virtualization, test prioritiza-
tion, and parallelization. Chen et al. [7] proposed utilizing XGBoost
to develop on-the-fly prioritization techniques to expedite APR.
Kim et al. [30] and Gresino [31] presented novel patch-scheduling
algorithms for enhancing APR time efficiency.

Different from these studies that typically focus on time effi-
ciency, our approach focus on memory efficiency, motivated by
the extensive memory requirements of LLMs. Our work is closely
related RepairLLama [57], which explores efficient fine-tuning of
LLMs during the training phase. Different from this work, we in-
vestigate memory efficiency during the patch generation phase.

7 CONCLUSION
In this study, we empirically evaluated the impact of beam size
on the memory efficiency and effectiveness of LLM-based APR
techniques. Our findings reveal that an increase in beam size re-
sults in significantly higher VRAM usage. Consequently, increasing
the beam size causes numerous out-of-memory crashes and sub-
sequently unduly degrades the performance of LLM-based APR.
To address this challenge, we introduced FLAMES —the first APR
approach that integrates LLMs with a semantic-guided best-first
algorithm to guide the repair process. Our evaluation on various
datasets demonstrates that FLAMES substantially outperforms the
state-of-the-art baselines. Additionally, FLAMES significantly re-
duces memory consumption by up to 83% and accelerates the repair
process compared to conventional LLM-based APR techniques.

Data Availability. We published replication package including
dataset and results and appendix at [3].
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